Микроэлектроника и функциональная электроника

Страница: 3/10

Освещение негативного фоторезиста вызывает дополнительную полимеризацию его молекул, вследствие чего после проявления пластины по­лупроводника на ней остаются нерастворимые участки рисунка, которые представляют собой негативное изображение фотошаблона, а неосвещенные участки фоторезиста смываются в растворителе при проявлении.

В позитивном фоторезисте под действием света происходит разру­шение молекул. При проявлении такой фоторезист удаляется с освещенных участков, а на поверхности пластины остается позитивное изображение фотошаблона,

Фоторезист должен быть чувствительным к облучению, иметь высо­кие разрешающую способность и кислотостойкость.

Для создания определенного рисунка с помощью фоторезиста используется фотошаблон, представляющий собой пластину из оптического стекла, на поверхности которой содержится рисунок соот­ветствующий по размерам будущей микросхеме. Фотошаблон может содержать до 2000 изображений одной микросхемы.

Последовательность фотолитографического процесса состоит в следующем .

На окисленную поверхность кремния с толщиной окисла 3000 - 6000 А наносят слой фоторезиста с помощью центрифуги. Фоторезист сушат сначала при комнатной температуре, затем при температуре 100 -150 0С.

Подложку совмещают с фотошаблоном и облучают ультрафиолетовым излучением. Засвеченный фоторезист проявляют, а затем промывают в деио­низированной воде. Оставшийся фоторезист задубливают при комнатной температуре и температуре 200 °С в течение одного часа, после чего окис­ленная поверхность кремния открывается в местах, соответствующих ри­сунку фотошаблона. Открытые участки окисла травят в специальных бу­ферных травителях (например, 10 мл НF и 100 мл NH4F в воде). На участки окисла, покрытые фоторезистом, травитель не действует. После травления фоторезист растворяют органическим растворителем и горячей серной кислотой. Поверхность пластины тщательно промывают. На поверх­ности кремния остается слой SiO2, соответствующий рисунку схемы

4 - диффузия для создания скрытого n-слоя.

Локальная диффузия является одной из основных технологических операций при создании полупроводниковых ИМС.

Диффузия в полупроводниковых кристаллах представляет собой на­правленное перемещение примесных атомов в сторону убывания их концен­трации. В качестве легирующих примесей в кремнии используются в основном бор и фосфор, причем бор создает примеси акцепторного типа, а фосфор донорного. Для бора и фосфора энергия активации соответственно равна 3,7 и 4,4 эВ. Различают два режима диффузии: диффузия из неограниченного источника и диффузия из ограниченного источника. В производстве ИМС реализуются оба случая диффузии. Диффузия из неограниченного источника представляет собой первый этап диффузии, в результате которого в полупроводник вводится определенное количество примеси. Этот процесс называют загонкой примеси.

Для создания заданного распределения примесей в глубине и на поверхности полупроводника проводится второй этап диффузии из ограниченного источника. Этот процесс называется разгонкой примеси.

Локальную диффузию проводят в открытые участки кремния по ме­тоду открытой трубы в потоке газа - носителя. Температурный интервал диффузии для кремния составляет 950 - 1300 °С. Кремниевые пластины размещают в высокотемпературной зоне диффузионной печи. Газ - носи­тель в кварцевой трубе при своем движении вытесняет воздух. Источники примеси, размещенные в низкотемпературной зоне, при испарении попа­дают в газ - носитель и в его составе проходят над поверхностью кремния.

Источники примеси, применяемые в производстве ИМС, могут быть твердыми: жидкими и газообразными. В качестве жидких источников ис­пользуются хлорокись фосфора РОСlз и ВВrз. После установления темпера­турного режима в рабочую зону печи поступает кислород, что способствует образованию на поверхности кремния фосфоро - и боросиликатного стекла. В дальнейшем диффузия проходит из слоя жидкого стекла Одновременно слой стекла защищает поверхность кремния от испарения и попадания по­сторонних частиц. Таким образом, в локальных участках кремния происхо­дит диффузия легирующей примеси и создаются области полупроводника с определенным типом проводимости.

После первой фотолитографии проводится локальная диффузия донорной примеси с малым коэффициентом диффузии (Аs, Sb) и формируется скрытый высоколегированный слой n+ глубиной около 2 мкм.

Примесь с малым коэффициентом диффузии необходимо использо­вать, чтобы свести к минимуму изменение границ скрытого слоя при после­дующих высокотемпературных технологических операциях. После этого с поверхности полностью удаляется слой окисла и пластина очищается. На очищенной поверхности кремния выращивается эпитаксиальный слой n-типа толщиной 10-15 мкм с удельным сопротивлением 0,1 - 10 Ом*см.

5 - снятие окисла и подготовка поверхности перед процессом эпитакси-ального наращивания;

6 - формирование эпитаксиальной структуры;

Эпитаксия представляет собой процесс роста монокристалла на ориентирующей подложке. Эпитаксиальный слой продолжает кристаллическую решетку под­ложки. Толщина его может быть от монослоя до нескольких десятков мик­рон. Эпитаксиальный слой кремния можно вырастить на самом кремнии. Этот процесс называется авто - или гомоэпитаксией. В отличие от авто-эпитаксии процесс выращивания монокристаллических слоев на подложках, отличающихся по химическому составу, называется гетероэпитаксией.

Реферат опубликован: 2/08/2009