Многопроцессорный вычислительный комплекс на основе коммутационной матрицы

Страница: 10/18

Это очень сложная проблема, относящаяся к области проблем "когерентности кэшей". Теоретически имеется много подходов к ее решению (например, аппаратное распознавание необходимости выталкивания записи из кэша с синхронным объявлением недействительным содержания всех кэшей, включающих тот же элемент данных). Однако на практике такие сложные действия не применяются, и обычным приемом является отмена режима кэширования в том случае, когда на разных процессорах мультипроцессорной системы выполняются нити одного процесса или процессы, использующие разделяемую память.

После введения понятия нити трансформируется само понятие процесса. Теперь лучше (и правильнее) понимать процесс ОС UNIX как некоторый контекст, включающий виртуальную память и другие системные ресурсы (включая открытые файлы), в котором выполняется, по крайней мере, один поток управления (нить), обладающий своим собственным (более простым) контекстом. Теперь ядро знает о существовании этих двух уровней контекстов и способно сравнительно быстро изменять контекст нити (не изменяя общего контекста процесса) и так же, как и ранее, изменять контекст процесса. Последнее замечание относится к синхронизации выполнения нитей одного процесса (точнее было бы говорить о синхронизации доступа нитей к общим ресурсам процесса - виртуальной памяти, открытым файлам и т. д.). Конечно, можно пользоваться (сравнительно) традиционными средствами синхронизации (например, семафорами). Однако оказывается, что система может предоставить для синхронизации нитей одного процесса более дешевые средства (поскольку все нити работают в общем контексте процесса). Обычно эти средства относятся к классу средств взаимного исключения (т. е. к классу семафороподобных средств). К сожалению, и в этом отношении к настоящему времени отсутствует какая-либо стандартизация.

3.3 Семафоры

Поддержка операционной системы в многопроцессорной конфигурации может включать в себя разбиение ядра системы на критические участки, параллельное выполнение которых на нескольких процессорах не допускается. Нижеследующие рассуждения помогают понять суть данной особенности. При ближайшем рассмотрении сразу же возникают два вопроса: как использовать семафоры и где определить критические участки.

Если при выполнении критического участка программы процесс приостанавливается, для защиты участка от посягательств со стороны других процессов алгоритмы работы ядра однопроцессорной операционной системы используют блокировку.

Механизм установления блокировки:

/* операция проверки */

выполнять пока (блокировка установлена)

{

приостановиться (до снятия блокировки);

};

установить блокировку;

Механизм снятия блокировки:

снять блокировку;

вывести из состояния приостанова все процессы, приостановленные в результате блокировки;

Блокировки такого рода охватывают некоторые критические участки, но не работают в многопроцессорных системах, что видно из приведенного рисунка:

Предположим, что блокировка снята, и что два процесса на разных процессорах одновременно пытаются проверить ее наличие и установить ее. В момент t они обнаруживают снятие блокировки, устанавливают ее вновь, вступают в критический участок и создают опасность нарушения целостности структур данных ядра. В условии одновременности имеется отклонение: механизм не сработает, если перед тем, как процесс выполняет операцию проверки, ни один другой процесс не выполнил операцию установления блокировки. Если, например, после обнаружения снятия блокировки процессор A обрабатывает прерывание и в этот момент процессор B выполняет проверку и устанавливает блокировку, по выходе из прерывания процессор A так же установит блокировку. Чтобы предотвратить возникновение подобной ситуации, нужно сделать так, чтобы процедура блокирования была неделимой: проверку наличия блокировки и ее установку следует объединить в одну операцию, чтобы в каждый момент времени с блокировкой имел дело только один процесс.

Реферат опубликован: 6/09/2006