Сверхпроводимость

Страница: 5/11

z(Т)=z0(Tc/(Tc-T))½,

где x0 зависит от свойств сверхпроводника и составляет по порядку величины 10-6 - 10-8 м.

рис.3 Распределение магнитного потока и плотности сверхпроводящих электронов вблизи фазовой границы.

В ns

норм. сверхпроводящая

обла- область

сть

x

Bc

l ns(Т)

x

0

Основы микроскопической теории сверхпроводимости.

Взаимодействие электронов с фотонами. Ранее было показано, что переход о нормального к свехпроводящему состоянию связан с определенным упорядочиванием в электронной системе твердого тела. На основании этого можно предположить, что переход в сверхпроводящее состояние обусловлен взаимодействием электронов друг с другом.

В принципе можно предположить различные механизмы такого взаимодействия. Были попытки объяснить упорядочение системы с помощью механизма кулоновского отталкивания электронов. Рассматривалось магнитное взаимодействие электронов, которые, пролетая через решетку с большими скоростями, создают магнитное поле и с помощью него взаимодействия между собой. Однако эти и другие подходы не позволяют построить теорию сверхпроводимости и объяснить электрические, магнитные и тепловые свойства сверхпроводников.

Конструктивной основой для создания такой теории стала идея о взаимодействии электронов через колебания решетки, сформулированная в 1950-51 гг. практически независимо друг от друга Г. Фрелихом и Дж. Бардиным. Такое рассмотрение позволило уже в 1957 г. Дж. Бардину, Л. Куперу и Дж. Шифферу создать микроскопическую теорию сверхпроводимости, получившая название БКШ ( по начальным буквам фамилий авторов).

Рассмотрим качественно механизм межэлектронного взаимодействия через колебания решетки. Как известно, ионы в кристаллической структуре совершают колебания около положений равновесия. Если в такую решетку поместить всего два электрона и пренебречь всеми остальными, то положительно заряженные ионы, расположенные вблизи этих электронов, будут притягиваться к ним. Образуются две области поляризации решетки, то есть скопления положительного заряда ионов вблизи оказывающих поляризующее действие отрицательно заряженных электронов. Второй электрон и поляризованная им область решетки могут реагировать на поляризацию, вызванную первым электроном. При этом второй электрон испытывает притяжение к месту поляризации первого электрона, а следовательно, и к нему самому.

Рассмотренная выше модель имеет весьма существенный недостаток - она является статической. Реально электроны в металле имеют очень большие скорости (порядка 106 м/c) . Поэтому можно предположить, что электрон, перемещаясь по кристаллу, притягивает ионы и создает область избыточного положительного заряда. Такая динамическая поляризация является относительно устойчивой, поскольку масса ионов значительно больше, чем масса электронов. Таким образом, второй электрон, пролетая сквозь решетку, притягивается к этому сгустку положительного заряда, а следовательно, и к первому электрону. Отметим, что при высоких температурах ( больше критической) интенсивное тепловое движение узлов кристалла делает поляризацию решетки слабой, а следовательно, практически невозможным взаимодействие между электронами.

Реферат опубликован: 20/11/2009