Спектральный анализ и его приложения к обработке сигналов в реальном времени

Страница: 14/16

1.) Провести сравнительный анализ численных методов спектрального анализа на различных типах тестовых сигналах.

2.) Выявить особенности каждого из методов и на их основе сделать вывод о целесообразности применения того или иного алгоритма в следующих условиях вычислительного эксперимента:

2.0.) Тест-сигнал состоит из смеси комплексных синусоид и шумовых процессов (белых шумов, пропущенных через фильтры с частотными характеристиками типа приподнятого косинуса) (используем для проверки способности метода к сохранению «достоверности» формы спектра)

2.1.) Несколько комплексных синусоид, присутствующие в анализируемом сигнале, имеют близкие частоты (этот тип тестовых сигналов используем для получения предельной разрешающей способности по частоте)

2.2.) В сигнале присутствуют слабые синусоидальные составляющие на фоне сильных шумовых процессов (анализируем способность спектральных оценок обеспечивать обнаружение слабых компонент сигнала).

2.3.) Проводим серию испытаний с одним методом и формируем при этом различные реализации процесса (здесь анализируем качество оценки СПМ, рассматриваемое как функция дисперсии оценки, зависящая от частоты; меньшим значениям функции соответствует лучшая оценка на заданной частоте). Здесь же вводится в рассмотрение равномерный критерий оценки качества получаемых оценок СПМ и на основе его делается вывод о наилучшем методе в рамках своего класса и, вообще, о лучшем из всех исследованных в рамках данной работы.

2.4.) Для вычислительных схем функционирующих в реальном масштабе времени проводим серию экспериментов, направленных на выявление влияния значений параметров на структурную устойчивость алгоритма.

2.5.) Серия экспериментов, направленных на решение вопроса о выборе значений параметров в параметрических методах оценки СПМ (выбор порядка в авторегрессионном методе и методе авторегрессии-скользящего среднего, а также порядок модели линейного предсказания в ковариационном методе; шаг адаптации в адаптивном авторегрессионном алгоритме; действительный весовой множитель в рекурсивном алгоритме наименьших квадратов; количество главных собственных векторов, отвечающих подпространству сигнала в методе, основанном на собственных значениях; тип окна в классических методах спектрального анализа).

Сохранение «достоверности» формы спектра - одно из свойств, которое присуще практически всем исследованным методам. Однако меру «достоверности» сложно определить аналитически и затем количественно для каждого из методов, поэтому «достоверность» относится к числу субъективных критериев качества получаемых оценок и основным подходом к сравнению алгоритмов является визуальное сравнение получаемых оценок с истинным априорно известным спектром тест-сигнала. Результаты сравнения полученных каждым из исследованных методов оценок приведены в приложении C.

Максимально допустимое разрешение оценки СПМ для всех рассмотренных методов приведены в приложении D. Как и следовало ожидать наилучшими в смысле спектрального разрешения являются альтернативные неклассические методы. Основной недостаток классических методов заключается в искажающем воздействии какого бы то ни было взвешивающего окна. А псевдоусреднение по ансамблю за счет сегментации данных приводит к еще более худшему разрешению (приложение D график N). От этого недостатка свободны все остальные взятые в рассмотрение методы. Однако в случае авторегрессионных методов увеличение порядка модели наряду с улучшением разрешающей способности приводит к эффекту появления ложного спектрального пика или к расщеплению спектральной линии (что продемонстрировано на графике N приложения D). Оценки по методу минимума дисперсии и оценки, полученные авторегрессионными методам, связаны некоторыми соотношениями, поэтому эти же эффекты присутствуют и в МД-оценках. В случае алгоритмов, основанных на сингулярном разложении матрицы данных, значительные ложные пики также имеют место при увеличении порядка модели.

Практически все методы позволяют экспериментально обнаружить слабые синусоидальные составляющие. В таблице приложения Е приведены максимально допустимое соотношение сигнал/шум для всех методов, при котором еще возможно обнаружить составляющие сигнала, а также графики, иллюстрирующие результаты исследования.

Приложение F включает в себя получение и исследование дисперсии оценок СПМ как функции частоты.

Выбор правильных параметров в методах, функционирующих в реальном масштабе времени сопряжен со значительными трудностями. С одной стороны, если рассматривать градиентный адаптивный авторегрессионный метод, выбор большего параметра адаптации приводит к улучшению разрешающей способности и к увеличению «достоверности» спектра, с другой стороны это приводит к возрастанию структурной неустойчивости всей вычислительной схемы, а на больших порядках модели, вообще, к разрушению алгоритма. В эксперименте с аудио сигналом для каждого представления отсчетов (под представлением понимается следующий набор установок : частота дискретизации из диапазона 8 Кгц. - 44 Кгц., количество каналов - 1 (моно)/ 2(стерео), количество битов на отсчет 8 бит/16 бит ) и для каждого набора параметров схемы, осуществляющей сбор данных в реальном масштабе времени (количество (значения из диапазона : 3, .,128) и длина буферных областей задержек данных на входе и выходе (значения из диапазона : 256, .,16384 отчета)) было выбрано компромиссное решение. Результаты приведены в приложении G.

Реферат опубликован: 18/12/2006