Автоматизация проектирования цифровых СБИС на базе матриц Вайнбергера

Страница: 4/6

Заключение. В обзоре представлены основные подходы к проектированию структур заказных цифровых СБИС на базе основных моделей матриц Вайнбергера и транзисторных матриц.

Модификация основной модели МВ, когда снимаются требования подключения каждого столбца к линии «земли»; реализация каждой переменной только в одной стоке матрицы; невозможности дублирования линий «земли» и нагрузки; приводит к новым формальным постановкам задач оптимизации параметров МВ, хотя и для основной модели не все проблемы решены - открыта, например, проблема синтеза МВ с заданным быстродействием.

Таким образом, важнейшими проблемами, решаемыми в настоящее время для МВ и ТМ, являются проблемы разработки формальных методов синтеза, которые позволяли бы гибко оптимизировать такие характеристики, как площадь, быстродействие, габариты, электрические параметры схем. Данные проблемы в настоящее время актуальны не только для МВ и ТМ - подобные проблемы находятся в центре внимания разработчиков САПР заказных цифровых СБИС и применительно к другим базовым структурам.

Матричные процессоры

Матричные процессоры наилучшим образом ориентированы на реализацию алгоритмов обработки упорядоченных (имеющих регулярную структуру) массивов входных данных. Они появились в середине 70-ых годов в виде устройств с фиксированной программой, которые могли быть подключены к универсальным ЭВМ; но к настоящему времени в их программировании достигнута высокая степень гибкости. Зачастую матричные процессоры используются в качестве вспомогательных процессоров, подключаемых к главной универсальной ЭВМ. В большинстве матричных процессоров осуществляется обработка 32 разрядных циклов с плавающей запятой со скоростью от 5000000 до 50000000 флопс. Как правило, они снабжены быстродействующими портами данных, что дает возможность для непосредственного ввода данных без вмешательства главного процессора. Диапазон вариантов построения матричных процессоров лежит от одноплатных блоков, которые вставляются в существующие ЭВМ до устройств, конструктивно оформленных в виде нескольких стоек, которые по существу представляют собой конвейерные суперЭВМ.

Типичными видами применения матричных процессоров является обработка сейсмической и акустической информации, распознавание речи; для этих видов обработки характерны такие операции, как быстрое преобразование Фурье, цифровая фильтрация и действия над матрицами. Для построения относительно небольших более экономичных в работе матричных процессоров используются разрядно-модульные секции АПУ в сочетании с векторным процессором, реализованным на основе биполярного СБИС-процессора с плавающей запятой.

Вероятно, в будущем матричные процессоры будут представлять собой матрицы процессоров, служащие для увеличения производительности процессоров сверх пределов, установленных шинной архитектурой.

Главным архитектурным различием между традиционными ЭВМ, предназначенными для обработки научной и коммерческой информации, является то, что последние (мини-, супермини-, универсальные и мега-универсальные ЭВМ) имеют главным образом скалярную архитектуру, а машины для научных расчетов (супер-, минисупер-ЭВМ и матричные процессоры) - векторную. Скалярная ЭВМ (рис. 1.) имеет традиционную фон-неймановскую, то есть SISD-организацию, для которой характерно наличие одной шины данных и последовательное выполнение обработки одиночных элементов данных. Векторная машина (рис. 2.) имеет в своем составе раздельные векторные процессоры или конвейеры, и одна команда выполняется в ней над несколькими элементами данных (векторами)

Векторные архитектуры - это в основном архитектуры типа SISD, но некоторые из них могут относиться к классу MIMD. Векторная обработка увеличивает производительность процессорных элементов, но не требует наличия полного параллелизма в ходе обработки задачи.

Для реализации обработки сигналов матрицы МЛМД могут быть реализованы в виде систолических или волновых матриц.

Систолическая матрица состоит из отдельных процессорных узлов, каждый из которых соединен с соседним посредством упорядоченной решетки. Большая часть процессорных элементов располагает одинаковыми наборами базовых операций, и задача обработки сигнала распределяется в матричном процессоре по конвейерному принципу. Процессоры работают синхронно, используя общий задающий генератор тактовых сигналов, поступающий на все элементы.

Реферат опубликован: 5/01/2007