Автоматизированное проектирование СБИС на базовых матричных кристаллах

Страница: 5/7

моугольную);

- наличие нескольких вариантов реализации одного и того же

типа элемента;

- позиции для размещения элементов группируются в макроячей-

ки;

- элементы могут содержать проходы для транзитных трасс;

- равномерное распределение внешних элементов по всей перифе-

рии кристалла;

- ячейка БМК, не занятая элементом, может использоваться для

реализации соединений;

- число элементов матричных БИС значительно превышает значе-

ние соответствующего параметра печат ных плат.

Перечисленные отличия не позволяют непосредственно использо-

вать САПР печатных плат для проектирования матричных БИС. Поэтому

в настоящее время используются и разрабатываются новые САПР, пред-

назначенные для проектирования матричных БИС, а также дорабатыва-

ются и модернизируются уже действующие САПР печатных плат для ре-

шения новых задач. Реализация последнего способа особенно упроща-

ется, когда в системе имеется набор программ для решения задач те-

ории графов, возникающих при конструировании.

Поскольку трассировка соединений на БМК ведется с заданным

шагом на дискретном рабочем поле (ДРП), то необходимо чтобы выводы

элементов попадали в клетки ДРП. Однако внешние выводы макроячеек

могут располагаться с шагом, не кратным шагу ДРП. В этом случае

используется простой прием введения фиктивных контактных площадок,

связанных с внутренними частями ячейки. Если трасса к макроячейке

не подходит, то область фиктивной площадки остается свободной.

При разработке САПР БИС на БМК необходимо учитывать требова-

ния к системам, диктуемые спецификой решаемой задачи. К ним отно-

сятся:

1. Реализация сквозного цикла проектирования от схемы до

комплектов машинных документов на изготовление, контроль эксплуа-

тацию матричных БИС.

2. Наличие архива данных о разработках, хранимого на долгов-

ременных машинных носителях информации.

3. Широкое применение интерактивных режимов на всех этапах

проектирования.

4. Обеспечение работы САПР в режиме коллективного пользова-

ния. Учитывая большую размерность залачи проектирования,

большинство существующих САПР матричных БИС реализовано на высо-

копроизводительных ЭВМ. Однако в последнее врем все больше зару-

бежных фирм применяет и мини-ЭВМ.

ОСНОВНЫЕ ЭТАПЫ ПРОЕКТИРОВАНИЯ

Процесс проектирования матричных БИС традиционно делится на

следующие укрупненные этапы:

1. Моделирование функционирования объекта проектирования.

2. Разработка топологии.

3. Контроль результатов проектирования и доработка.

4. Выпуск конструкторской документации.

Рассмотрим каждый шаг в отдельности. Поскольку матричная БИС

является ненастраиваемым и не ремонтоспособным объектом, то необ-

ходимо еще на этапе проектирования обеспечить его правильное

функционирование. Достижение этой цели возможно двумя способами:

созданием макета матричных БИС на основе дискретных элементов и

его испытанием и математическим моделированием. Первый способ свя-

зан с большими временными и стоимостными затратами. Поэтому макет

используется тогда, когда он специально не разрабатывается, а уже

существует (например, при переходе от реализации устройств на пе-

чатных платах к матричным БИС). Второй способ требует создания эф-

фективной системы моделирования схем большого размера, так как при

моделировании необходимо учитывать схемное окружение матричных

БИС, которое по числу элементов во много раз больше самой схемы.

Этап разработки топологии связан с решением следуюших задач:

размещение элементов на БМК, трассировка соединений, корректировка

топологии. Иногда в качестве предварительного шага размещения ре-

шается специальная задача компоновки (распределения элементов по

макроячейкам). В этом случае возможны различные методы решения за-

дачи размещения. Первый метод состоит в том, чтобы после компонов-

ки размещать группы элементов, соответствующих макроячейкам, а за-

тем размещать элементы внутри каждой макроячейки. При этом крите-

рий оптимальности компоновки вклкючает составляющие, определяемые

плотностью заполнения макроячеек и связностью элементов макроячей-

ки. Достоинствами этого метода являются сокращение размерности за-

дачи размещения и сведение исходной задачи к традиционным задачам

компоновки и размещения. Возможность применения традиционных мето-

дов компоновки предопределяется тем, что условие существования ре-

ализации группы элементов в макроячейке для получивших распростра-

нение БМК легко выражается через суммарную площадь элементов и от-

ношение совместимости пар элементов. Отметим, что так как располо-

жение элементов внутри макроячеек существенно влияет на условия

трассировки соединений между макроячейками, рассмотренный метод

Реферат опубликован: 24/06/2006