Эффект Ганна и его использование, в диодах, работающих в генераторном режиме

Страница: 9/12

,

где –эквивалентное сопротивление нагрузки, пересчитанное к зажимам диода и равное модулю активного отрицательного сопротивления ЛПД.

Максимальная напряженность электрического поля в домене значительно превышает среднее значение поля в диоде , в то же время она должна быть меньше пробивной напряженности, при которой возникает лавинный пробой материала (для GaAs ). Обычно допустимым значением электрического поля считают .

Как и для ЛПД, на относительно низких частотах (в сантиметровом диапазоне длин волн) максимальное значение выходной мощности диодов Ганна определяется тепловыми эффектами. В миллиметровом диапазоне толщина активной области диодов, работающих в доменных режимах, становится малой и преобладают ограничения электрического характера. В непрерывном режиме в трехсантиметровом диапазоне от одного диода можно получить мощность 1–2 Вт при к. п. д. до 14%; на частотах 60–100 ГГц – до 100 вВт при к. п. д. в единицы процентов. Генераторы на диодах Ганна характеризуются значительно меньшими частотными шумами, чем генераторы на ЛПД.

Режим ОНОЗ отличается значительно более равномерным распределением электрического поля. Кроме того, длина диода, работающего в этом режиме, может быть значительной. Поэтому амплитуда СВЧ-напряжения на диоде в режиме ОНОЗ может на 1–2 порядка превышать напряжение в доменных режимах. Таким образом, выходная мощность диодов Ганна в режиме ОНОЗ может быть повышена на несколько порядков по сравнению с доменными режимами. Для режима ОНОЗ на первый план выступают тепловые ограничения. Диоды Ганна в режиме ОНОЗ работают чаще всего в импульсном режиме с большой скважностью и генерируют в сантиметровом диапазоне длин волн мощность до единиц киловатт.

Частота генераторов на диодах Ганна определяется в основном резонансной частотой колебательной системы с учетом емкостной проводимости диода и может перестраиваться в широких пределах механическими и электрическими методами.

В волноводном генераторе (рис.10, а) диод Ганна 1 установлен между широкими стенками прямоугольного волновода в конце металлического стержня. Напряжение смещения подается через дроссельный ввод 2, который выполнен в виде отрезков четвертьволновых коаксиальных линий и служит для предотвращения проникновения СВЧ-колебаний в цепь источника питания. Низкодобротный резонатор образован элементами крепления диода в волноводе. Частота генератора перестраивается с помощью варакторного диода 3, расположенного на полуволновом расстоянии и установленного в волноводе аналогично диоду Ганна. Часто диоды включают в волновод с уменьшенной высотой , который соединен с выходным волноводом стандартного сечения четвертьволновым трансформатором.

Рис.10. Устройство генераторов на диодах Ганна:

а–волноводного; б–микрополоскового; в–с перестройкой частоты ЖИГ-сферой

В микрополосковой конструкции (рис.10, б) диод 1 включен между основанием и полосковым проводником. Для стабилизации частоты используется высокодобротный диэлектрический резонатор 4 в виде диска из диэлектрика с малыми потерями и высоким значением (например, из титаната бария), расположенного вблизи полоскового проводника МПЛ шириной . Конденсатор 5 служит для разделения цепей питания и СВЧ-тракта. Напряжение питания подается через дроссельную цепь 2, состоящую из двух четвертьволновых отрезков МПЛ с различными волновыми сопротивлениями, причем линия с малым сопротивлением разомкнута. Использование диэлектрических резонаторов с положительным температурным коэффициентом частоты позволяет создавать генераторы с малыми уходами частоты при изменении температуры (~40 кГц/°С).

Реферат опубликован: 24/03/2009