Газовая хроматография

Страница: 8/9

Пламенно - ионизационный детектор (ПИД). Схема ПИД приведена на рис. 9. Выходящий из колонки газ сме­шивается с водородом и поступает в форсунку горелки детектора.

Подпись: Рис. 9 Схема ПИД: 1 - ввод газа на колонки; 2 - ввод водорода; 3 - вывод в атмосферу; 4 - соби-рающий электрод; 5 - катод; 6 - ввод воздухаОбразующиеся в пламени ионизованные частицы заполняют межэлек­тродное пространство, в результате чего сопротивление снижается, ток резко усиливается. Стабильность и чувствительность ПИД зависит от подходящего выбора скорости потока всех используемых газов (газ-носитель ~30—50 мл/мин, H2 ~30 мл/мин, воздух ~300—500 мл/мин). ПИД реагирует практически на все соединения, кроме Н2, инертных газов, О2, N2, оксидов азота, серы, углерода, а также воды. Этот детек­тор имеет широкую область линейного отклика (6—7 порядков), поэто­му он наиболее пригоден при определении следов.

Области применения газовой хроматографии

Метод ГХ — один из самых современных методов многокомпонент­ного анализа, его отличительные черты — экспрессность, высокая точность, чувствительность, автома­тизация. Метод позволяет решить многие аналитические проблемы. Количественный ГХ анализ можно рассматривать как самостоятельный аналитический метод, более эф­фективный при разделении веществ, относящихся к одному и тому же классу (углево­дороды, органические кислоты, спирты и т.д.). Этот метод незаменим в нефтехимии (бензины содержат сотни соединений, а керосины и масла — тысячи), его используют при определении пес­тицидов, удобрений, лекарственных препаратов, витаминов, нар­коти­ков и др. При анализе сложных многокомпонентных смесей успешно применяют метод капиллярной хроматографии, поскольку число тео­ретических тарелок для 100 м колонки достигает (2—3)*105.

Возможности метода ГХ существенно расширяются при использова­нии реакционной газовой хроматографии (РГХ), вследствие того что многие нелетучие, термонеустойчи­вые или агрессивные вещества непос­редственно перед введением в хроматографиче­скую колонку могут быть переведены с помощью химических реакций в другие — бо­лее летучие и устойчивые. Химические превращения осуществляют чаще на входе в хроматографическую колонку, иногда в самой колонке или на выходе из нее перед де­тектором. Значительно удобнее проводить превращения вне хроматографа. Недостатки метода РГХ связаны с появлением новых источников ошибок и возрастанием времени анали­за.

Реакционную хроматографию часто используют при определении содержа­ния микро­количеств воды. Вода реагирует с гидридами металлов, с карбидом кальция или метал­лическим натрием и др., продукты реакции (водород, аце­тилен) детектируются с высо­кой чувствительностью пламенно-ионизационным детектором. К парам воды этот де­тектор малочувствителен. Широко применяют химические превращения в анализе тер­мически неустойчивых биологических смесей. Обычно анализируют производные ами­нокислот, жирных кислот С10—C20, сахаров, стероидов. Для изучения высокомолеку­лярных соединений (олигомеры, полимеры, каучуки. смолы и т.д.) по продуктам их разложения используют пиролизную хроматографию. В этом методе испарение пробы заменяют пиролизом. Карбонаты металлов можно проанализировать по выде­ляюще­муся диоксиду углерода при обработкеих кислотами.

Методом газовой хроматографии можно определять металлы, пере­водяих в летучие хелаты. Особенно пригодны для хроматографирования хелаты 2-, 3- и 4-валентных ме­таллов с b-дикетонами. Лучшие хроматографические свойства проявляют b-дикето­наты Be(II), Al(III), Sc(III), V(III), Cr(III). Газовая хроматография хелатов может конку­рировать с другими инструментальными методами анализа.

ГХ используют также в препаративных целях для очистки хими­ческих препаратов, вы­деления индивидуальных веществ из смесей. Метод широко применяют в физико-хи­мических исследованиях: для определения свойств адсорбентов, термодинамических характеристик адсорбции и теплот адсорбции, величин поверхности твердых тел, а также констант равновесия, коэффициентов активности и др.

Реферат опубликован: 15/09/2009