Волоконно-оптические линии связи

Страница: 4/21

В первые годы твердотельные лазеры применялись главным образом в импульсном режиме. В качестве источников света применялись лампы-вспышки, которые периодиче­ски возбуждали кристалл сверхмощными некогерентными световыми импульсами и вы­зывали излучение коротких когерентных световых импульсов. В качестве примера, раз­работанного в то время лазера непрерывного излучения можно назвать лазер на неодимовом гранате (Nd-YAG), ядро которого представляет собой иттриево-аллюминиевый гра­нат (YA3Al5O12) с примесью неодима. Основные линии энергии накачки лежат здесь в области длин волн 750 — 810 нм, основной лазерный переход — на 1064 нм. (Возбуждаемы также и другие переходы.)

3.3 Высокая степень когерентности требует затрат

Описанный неодимо-иттриево-алюминиевый гранат является одним из многих возможных материалов, применяемых в лазерах. Приемлемы также многие другие мате­риалы; требуется лишь, чтобы они принципиально могли излучать свет (флюоресцировать) и обладали метастабильным состоянием с возможно более высокой устойчивостью или временем жизни. Возбуждение этого состояния должно осуществ­ляться с высоким КПД (что обусловливает относительно малую мощность накачки), и, наконец, материал должен обладать малыми оптическими потерями.

Некоторые газы хорошо соответствуют перечисленным условиям, поэтому можно построить так называемый газовый лазер. Один из наиболее известных газовых лазеров использует в качестве активного материала смесь из гелия и неона, где энергия возбужде­ния подводится в форме электрического разряда в газе. В тонкой стеклянной трубке дли­ной от нескольких десятков сантиметров до 1 м разряд зажигается между двумя электро­дами, впаянными в корпус трубки. При этом во всем объеме возбужденного газа внутри трубки возникают электроны, энергия которых служит для того, чтобы, прежде всего, пе­ревести на более высокий энергетический уровень атомы гелия, которые в свою очередь в результате аналогичного эффекта возбуждают имеющиеся в незначительном количестве атомы неона. Эти атомы неона создают при описанном синхронизированном обратном переходе в основное состояние индуцированное излучение.

Техническим условием нарастания данного процесса в свою очередь является на­личие оптического объемного резонатора, такого, какой получался в описанном выше твердотельном лазере при нанесении плоскопараллельных зеркальных слоев на обе тор­цевые поверхности кристалла. В газовом лазере активный элемент конструктивно отли­чается от активного элемента кристаллического лазера. Газоразрядная трубка сначала закрывается наклеенными стеклянными концевыми пластинками и затем — оптически точно выверенная — вносится в объемный резонатор, образованный двумя внешними зеркалами. В современных небольших газовых лазерах применяют также внутренние зер­кала, располагаемые в газоразрядном пространстве. По крайней мере, одно из зеркал дела­ется полупрозрачным, так чтобы часть света могла покидать резонатор («окно Брюстера»).

Так как длина волны генерируемого лазером света определяется разностью энерге­тических уровней соответствующих активных материалов (и вполне могут существовать одновременно несколько таких излучающих переходов), возможно излучение света раз­личных длин волн. Так, лазер на He-Ne может принципиально излучать на трех различ­ных длинах волн. Чаще всего он работает на длине волны 0,63 мкм. Эта длина волны со­ответствует красному свету видимого диапазона. Наряду с ним имеются возбужденные, невидимые для нас длины волн 1,15 и 3,39 мкм. Какая из трех возможных волн покинет объем резонатора, определяет конструктор лазера нанесением частотноселективной пленки на зеркало.

Реферат опубликован: 31/05/2008