Есть ли пределы развития и миниатюризации компьютеров

Страница: 5/11

Для построения химических (газовых) сенсоров уже давно используются преобразователи сигнала из химической формы в электрическую и обратно. Что касается преобразования электрических сигналов в оптические, то для этого подходят молекулярные аналоги светодиодов и лазеров, в которых используются светоизлучающие молекулы (хромафоры). Недавно появилось сообщение японских ученых о создании светоизлучающего устройства, состоящего из одной органической молекулы дендромера.

Если для вывода и отображения информации в молекулярном компьютере использовать уже существующие сегодня устройства (мониторы, проекторы и т.п.), то, как и в случае с вводом, необходимо просто иметь соответствующие преобразователи сигналов. Вместе с тем, молекулярная электроника предлагает свои пути решения этой проблемы. Например, разрабатываются молекулярные устройства, на основе которых могут быть созданы сверхтонкие жидкокристаллические мониторы. Для этого под массой жидких кристаллов наносится тонкая органическая пленка, обладающая ориентирующим эффектом. На каждую молекулу пленки поступает сигнал из компьютера, меняющий ее конформацию и соответственно ориентацию нанесенного сверху слоя жидких кристаллов, а также его отражательные свойства. Таким образом, полученная структура может служить для вывода информации на экран.

По сходному принципу работают так называемые “электронные таблетки” – экраны небольшого размера, покрытые слоем хиральных жидких кристаллов, молекулы которых могут менять тип симметрии в зависимости от ориентации подложки, изменяя при этом и окраску. Такие таблетки из полиимидных подложек с внедренными молекулами азокрасителей позволяют записывать с помощью поляризованного света лазера и отображать очень большой объем информации, в результате чего они получили название “газеты будущего” [9]. Такие структуры могут создаваться и на гибкой полимерной подложке, что делает их еще более удобными для использования.

Второй возможный тип устройств отображения информации – это органические светодиоды, то есть активные излучающие устройства на основе p-n переходов, созданных из органических материалов. Такой светодиод состоит из одного или нескольких слоев органических молекул, помещенных между двумя электродами. Излучение света диодом происходит за счет взаимного уничтожения (аннигиляции) положительных и отрицательных зарядов в слое органического материала. Эти заряды могут поступать на светодиод непосредственно из молекулярного компьютера. Стоит отметить, что используемые в диоде электроды могут быть изготовлены не только из металла, но и из органических материалов, например на основе полианилина или полиацетилена. На сегодняшний день уже достигнут значительный прогресс в получении высоких значений эффективности светодиодов, в понижении их рабочих напряжений, а также в выборе цвета излучения. Разработаны устройства с эффективностью несколько люмен на ватт и со сроком службы несколько тысяч часов .

1.4 Есть ли у молекулярных компьютеров будущее ?

Хотя теоретические основы молетроники уже достаточно хорошо разработаны и созданы прототипы практически всех элементов логических схем, однако на пути реального построения молекулярного компьютера встают значительные сложности. Внешне очевидная возможность использования отдельных молекул в качестве логических элементов электронных устройств оказывается весьма проблематичной из-за специфических свойств молекулярных систем и требований, предъявляемых к логическим элементам.

В первую очередь логический элемент должен обладать высокой надежностью срабатывания при подаче управляющего воздействия. Если рассматривать оптическую связь между элементами, то в системе одна молекула - один фотон надежность переключения будет невелика из-за относительно малой вероятности перехода молекулы в возбужденное состояние. Можно пытаться преодолеть эту трудность, используя одновременно большое число квантов. Но это противоречит другому важному требованию: КПД преобразования сигнала отдельным элементом должен быть близок к 1, то есть средняя мощность реакции должна быть соизмерима со средней мощностью воздействия. В противном случае при объединении элементов в цепь вероятность их срабатывания будет уменьшаться по мере удаления от начала цепи. Кроме того, элемент должен однозначно переключаться в требуемое состояние и находиться в нем достаточно долго – до следующего воздействия. Для сравнительно простых молекул это требование, как правило, не выполняется : если переходом в возбужденное состояние можно управлять, то обратный переход может происходить спонтанно.

Реферат опубликован: 22/11/2008