Задание №1.
Произвести выборку 40 банков, пользуясь таблицей случайных чисел. Затем по отобранным единицам выписать значения факторного и результативного признаков.
Задание №2.
Построить ряд распределения по факторному признаку. Число групп определить по формуле Стерджесса. По построенному ряду распределения рассчитать среднее арифметическое, моду, медиану, показатели вариации. Сформулировать выводы.
Выводы: Вариация факторного признака (чистых активов) для данной совокупности банков является значительной, индивидуальные значения отличаются в среднем от средней на 11 127 232 тыс. руб.*, или на 106,08%. Среднее квадратическое отклонение превышает среднее линейное отклонение в соответствии со свойствами мажорантности средних. Значение коэффициента вариации (106,08%) свидетельствует о том, что совокупность достаточно неоднородна.
Задание №3
Осуществить проверку первичной информации по факторному признаку на однородность. Исключить резко выделяющиеся банки из массы первичной информации.
Проверка первичной информации по факторному признаку на однородность осуществлялась в несколько этапов по правилу 3 сигм. В результате была получена достаточно однородная совокупность (все единицы лежат в интервале (Xср. - 3s ; Xср. +3s), а коэффициент вариации меньше требуемых 33%), которая представлена ниже.
Задание №4
Предполагая, что данные банкам представляют собой 10% простую случайную выборку с вероятностью 0,954 определить доверительный интервал, в котором будет находиться средняя величина факторного признака для генеральной совокупности.
Xср.– DXген.ср. ≤ Xген.ср. ≤ Xср. + DXген.ср.
Где Xср. – средняя выборочной совокупности, Xген.ср. – средняя генеральной совокупности, DXген.ср. – предельная ошибка средней.
DXген.ср. = t * μген.ср.
Где t – коэффициент кратности средней ошибки выборки, зависящий от вероятности, с которой гарантируется величина предельной ошибки, μген.ср. – величина средней квадратической стандартной ошибки.
Находим t по таблице для удвоенной нормированной функции Лапласа при вероятности 0,954, t = 2.
μген.ср. = Ö((s2*(1- n/N))/n)
Где s2 – дисперсия, n – объем выборочной совокупности, N – объем генеральной совокупности.
N=n/0,1 n=25 N=250 s2= 200 301 737 920 Xср. = 1 506 994 (я взял дисперсию и среднюю, рассчитанные по однородной совокупности по не сгруппированным данным)
μген.ср.= 84 917 DXген.ср. = 169 834
Xср.– DXген.ср.= 1 337 161 Xср. + DXген.ср.= 1 676 828
1 337 161 ≤ Xген.ср. ≤1 676 828 - искомый доверительный интервал
* В исследовании все размерные величины измеряются тысячами рублей. По причине нехватки места размерность после каждой величины не приводиться.
Реферат опубликован: 23/08/2006