Страница: 6/8
;
,
где cij – коэффициент взвешенной связности элементов i и j; Jl-1 – множество индексов элементов, закрепленных на предыдущих l-1 шагах; n – общее число размещенных элементов.
Если установочные размеры всех размещаемых на плате элементов одинаковы, то выбранный на очередном шаге элемент закрепляют в той позиции из числа незанятых, для которой значение целевой функции с учетом ранее размещенных элементов Rl-1 минимально. В частности, если критерием оптимальности является минимум суммарной взвешенной длины соединений, то
,
где dfj – расстояние между f-ой позицией установки элемента и позицией размещенного ранее элемента rj; Tl-1 – множество позиций, занятых элементами после (l-1)-го шага алгоритма.
Процесс размещения алгоритма заканчивается после выполнения n шагов алгоритма.
Алгоритмы, использующие последовательный процесс закрепления элементов в позициях, являются в настоящее время самыми быстродействующими. Однако по качеству получаемого решения последовательные алгоритмы уступают итерационным. Поэтому их используют обычно для получения начального размещения элементов на плате.
4. АЛГОРИТМЫ ТРАССИРОВКИ
Трассировка соединений является, как правило, заключительным этапом конструкторского проектирования РЭА и состоит в определении линий, соединяющих эквипотенциальные контакты элементов, и компонентов, составляющих проектируемое устройство.
Задача трассировки – одна из наиболее трудоемких в общей проблеме автоматизации проектирования РЭА. Это связано с несколькими факторами, в частности с многообразием способов конструктивно-технологической реализации соединений, для каждого из которых при алгоритмическом решении задачи применяются специфические критерии оптимизации и ограничения. С математической точки зрения трассировка – наисложнейшая задача выбора из огромного числа вариантов оптимального решения.
Одновременная оптимизации всех соединений при трассировке за счет перебора всех вариантов в настоящее время невозможна. Поэтому разрабатываются в основном локально оптимальные методы трассировки, когда трасса оптимальна лишь на данном шаге при наличии ранее проведенных соединений.
Основная задача трассировки формулируется следующим образом: по заданной схеме соединений проложить необходимые проводники на плоскости (плате, кристалле и т.д.), чтобы реализовать заданные технические соединения с учетом заранее заданных ограничений. Основными являются ограничения на ширину проводников и минимальные расстояния между ними.
Исходной информацией для решения задачи трассировки соединений обычно являются список цепей, параметры конструкции элементов и коммутационного поля, а также данные по размещению элементов. Критериями трассировки могут быть процент реализованных соединений, суммарная длина проводников, число пересечений проводников, число монтажных слоев, число межслойных переходов, равномерность распределения проводников, минимальная область трассировки и т.д. Часто эти критерии являются взаимоисключающими, поэтому оценка качества трассировки ведется по доминирующему критерию при выполнении ограничений по другим критериям либо применяют аддитивную или мультипликативную форму оценочной функции, например следующего вида
, где F – аддитивный критерий; λi – весовой коэффициент; fi – частный критерий; p – число частных критериев.
Известные алгоритмы трассировки печатных плат можно условно разбить на три большие группы:
1) Волновые алгоритмы, основанные на идеях Ли и разработанные Ю.Л. Зиманом и Г.Г. Рябовым. Данные алгоритмы получили широкое распространение в существующих САПР, поскольку они позволяют легко учитывать технологическую специфику печатного монтажа со своей совокупностью конструктивных ограничений. Эти алгоритмы всегда гарантируют построение трассы, если путь для нее существует;
Реферат опубликован: 16/12/2006