Страница: 4/6
F3(X,Y,Z,P) = (X,Y,Z,P) Ú (X,Y,Z,P) Ú (X,Y,Z,P) Ú (X,Y,Z,P) Ú
(X,Y,Z,P) Ú (X,Y,Z,P) Ú (X,Y,Z,P)
F5(X,Y,Z,P) = (X,Y,Z,P) Ú (X,Y,Z,P) Ú (X,Y,Z,P) Ú (X,Y,Z,P) Ú
(X,Y,Z,P) Ú (X,Y,Z,P) Ú (X,Y,Z,P) Ú (X,Y,Z,P) Ú (X,Y,Z,P)
ФАЛ в СКНФ примет вид:
F1(X,Y,Z,P) = (X Ú Y Ú Z Ú P) & (X Ú Y Ú Z Ú P) & (X Ú Y Ú Z Ú P) & (X Ú Y Ú Z Ú P) & (X Ú Y Ú Z Ú P) & (X Ú Y Ú Z Ú P)
F3(X,Y,Z,P) = (X Ú Y Ú Z Ú P) & (X Ú Y Ú Z Ú P) & (X Ú Y Ú Z Ú P) & (X Ú Y Ú Z Ú P) & (X Ú Y Ú Z Ú P) & (X Ú Y Ú Z Ú P) & (X Ú Y Ú Z Ú P) & (X Ú Y Ú Z Ú P) & (X Ú Y Ú Z Ú P)
F5(X,Y,Z,P) = (X Ú Y Ú Z Ú P) & (X Ú Y Ú Z Ú P) & (X Ú Y Ú Z Ú P) & (X Ú Y Ú Z Ú P) & (X Ú Y Ú Z Ú P) & (X Ú Y Ú Z Ú P) & (X Ú Y Ú Z Ú P)
2.6. Минимизация ФАЛ
Проведем минимизацию полученных ФАЛ при помощи карты Карно и представим их в ДНФ. Для этого попытаемся оптимальным образом объединить 0-кубы в кубы большей размерности. Клетки, образующие k-куб, дают минитерм n-k ранга, где n - число переменных, которые сохраняют одинаковое значение на этом k-кубе. Таким образом, получим ДНФ выбранных ФАЛ.
Рис 2.2а Рис 2.2б Рис 2.2в
Проведем минимизацию алгебраическим путем, воспользовавшись тождеством а È а = а.
1. XYZP Ú XYZP Ú XYZP Ú XYZP Ú XYZP Ú XYZP Ú XYZP Ú XYZP Ú XYZP Ú XYZP Ú XYZP Ú XYZP = XYZ Ú XZP Ú XZP Ú YZP Ú XYZ Ú XZP = ZP Ú XYZ Ú XZP Ú YZP Ú XYZ
2. XYZP Ú XYZP Ú XYZP Ú XYZP Ú XYZP Ú XYZPÚ XYZP Ú XYZP Ú XYZP Ú XYZP = YZP Ú YZP Ú XZP Ú XYZ Ú XYZ = XY Ú YZP Ú YZP Ú XZP
3. Ú XYZP Ú XYZP Ú XYZP Ú XYZP Ú XYZP Ú XYZPÚ XYZP Ú XYZP Ú XYZP Ú XYZP Ú XYZP = XZP Ú XYP Ú XYZ Ú XZP Ú XZP Ú XYZP
2.7. Представление ФАЛ в виде куба
3. Исследование ФАЛ.
3.1. Матрица отношений.
Построить матрицу отношений T:H ´ A. Матрица отношений представляет собой таблицу, строками которой являются записи (кортежи признаков), а строками отношения, которые имеют все уникальные имена. Матрица отношения представлена в таблице 3.
Матрица отношений. Табл. 3
3.2. Исследование ФАЛ на толерантность.
Определим классы толерантности. Рассмотрим классы толерантности k1, k2, k3, имеющие общие элементы, следовательно, являющиеся пересекающимися множествами.
h1 = h(a1) = h(A) = { X0, X1, X3, X5, X6, X7, X9, X12, X13, X14 }
h2 = h(a2) = h(B) = { X1, X2, X8, X9, X10, X11, X12 }
h3 = h(a3) = h(C) = { X0, X3, X5, X6, X7, X9, X10, X13, X14 }
Проанализировав классы h1, h2, h3, можно получить: k1 Ç k2 = 0;
k1 Ç k3 = 0; k2 Ç k3 = 0, т.е. {k1, k2, k3 } - образуют класс толерантности
Результаты исследования занесем в таблицу 3.
3.3. Исследование ФАЛ на эквивалентность.
Определим классы эквивалентности для этого множества А = {Х0, Х1, , Х15 } разобьем на классы эквивалентности, получим 6 классов
М1 = {AC} = {X0,X3,X5,X6 X7,X13,X14}
М2 = {AB} = {X1,X12}
М3 = {B} = {X2,X8,X11}
М4 = { } = {X4,X15}
М5 = {ABC} = {X9}
М6 = {BC} = {X10}
При этом каждый класс полностью определяется любым его представителем. Сопоставив результаты исследования с результатами пункта 3.2 получим следующие зависимости
М1 Ì K1 |
М2 Ì K1 |
М3 Ì K2 |
М5 Ì K1 |
М6 Ì K2 |
М1 Ì K3 |
М2 Ì K2 |
М5 Ì K2 |
М6 Ì K3 | |
М5 Ì K3 |
Реферат опубликован: 10/11/2009