Многопозиционная фазовая модуляция в системах спутниковой связи

Страница: 4/7

Расстояние между двумя гармоническими сигналами S1 и S2 длительностью Т1 отличающимися по фазе на угол

d=(S1,S2)= (S1(t)-S2(t))^2dt = (a*sin(*t+)-a*sin*t)^2dt =

_

=/ (a^2)*T(1-cos) =/2*E */1-cos ,где E=(a^2)*T/2

Ниже приведена таблица расчетов рассояний dm между ближайшими вариантами сигнала в m-позиционных системах с ФМ и соответствующих проигрышей (по минимальному сигнальному расстоянию), текущей системы двухпозиционной (см. 7 стр 49.):

Кратность манипуляции К

Число фаз m

Минимальная разнсть фаз

Минимальное евклидово расстояние между сигналами dm

d2/dm,дБ

1

2

2*/E

0

2

4

/2

/2*E=1.41*/E

3.01

3

8

/4

/(2-/2)E=0.765/E

8.34

4

16

/8

/(2--/2+/2)E=

=0.39/E

14.2

5

32

/16

/(2--/2+/2+/2)E=

=0.196/E

20.2

Равномерное размещение всех сигнальных точек на окружности, т.е. использование равномощных сигналов, отличающихся лишь фазой, является оптимальным только для 2-х, 3-х и 4-х позиционных случаев. При m>4 оптимальными будут неравномощные сигналы, которые кроме отличия по фазе имеют различие по амплитуде. Размещены они равномерно, обычно внутри окружности, радиус которой определяется максимально допустимой энергией сигнала. С точки зрения теории модуляции такие сигналы относятся к сигналам с комбинированной модуляцией, при которой одновременнo изменяется несколько параметров сигнала. В данном случае амплитуда и фаза (сигналы с амплитудно-фазовой манипуляцией АФМн). Простейший принцип построения сигналов с АФМн состоит в том, что сигнальные точки размещаются на двух концентрических окружностях. Однако, этот путь не всегда приводит к оптимальному результату. Например: 8-ми позиционный сигнал с АФМн:

_

4 сигнала размещены на окружности с радиусом R=/E , а 4 на окружности r<R со сдвигом по фазе /4 (сигнальные точки расположены рядом с их соответствующими номерами). Данная совокупность сигналов оптимизируется по критерию максимума минимального расстояния между сигналами, путём выбора отношения радиусов R и r. Оптимальное отношение R/r=1.932 определяется чисто из геометрических соображений: чем больше r, тем больше расстояние между сигнальными точками окружности радиуса r, но тем меньше расстояния между этими точками и токами окружности радиуса R. Пэтому искомый максимум R/r достигается тогда, когда эти расстояния будут равны т.е. равносторонним будет треугольник 854, а это будет только тогда, когда искомое отношение равно указанному. При этом оптимальном отношении минимальное расстояние между сигналами d8=0.73/E (см.7.стр.51). Это расстояние меньше,чем у системы 8-ми позиционных ФМн-сигналов, расположенных на одной окружности радиуса R(см. последнюю таблицу). Таким образом, в случае трехкратной системы размещение сигнальных векторов на двух концентрических окружностях не дает выигрыша. Оптимальным по критерию максимума минимального расстояния оказывается простейшая 8-ми позиционная система с АФМн, у которой 7 сигнальных точек размещены на окружности радиуса R=/E, а восьмой сигнал равен нулю:

Реферат опубликован: 10/12/2006