Добыча и экспорт нефти в 2000 и 2001 годах и их анализ

Страница: 10/17

1,83527E+13;

7,53145605

По таблице t-распределение Стьюдента определим для и . (0.05;7)=2,262158887.

Так как Трасч.>Ткрит., то гипотеза об отсутствии тенденции в исходном ряду динамики отвергается. Следовательно, в данном ряду есть тенденция и ее математическое выражение – тренд.

Мы подтвердили, что в изучаемом ряду динамики существует тенденция. Теперь попытаемся определить ее вид. Это сделаем с помощью метода сравнения средних уровней ряда динамики.

Метод сравнения средних уровней ряда динамики.

Разобьем весь исходный ряд динамики на две приблизительно равные части, каждая из которых рассматривается как самостоятельная, независимая совокупность, имеющая нормальное распределение. Для каждой части определяем выборочные характеристики n1, n2, , , , . Эти характеристики рассчитываются по следующим формулам:

;

Выдвинем гипотезу H0: о отсутствии тенденции средней в исследуемом ряду динамики. Гипотеза проверяется на основе t-критерия Стьюдента, расчетное значение которого определяется по следующей формуле:

Результаты вычислений по вышеуказанным формулам приведены в таблице 2.

n1=5, n2=4;

=1502846,956, =412726,62, =2865497,375

3,477E+11, 8,98182E+11

tрасч.= -4,786061765

По таблице t- распределение Стьюдента определим tкрит. для 0,05 и , то есть tкрит.= 2,36462256. Так как |tрасч.| > tкрит, то гипотеза H0 о равенстве средних двух нормально распределенных совокупностей отвергается. Следовательно средние различаются между собой значимо и расхождение между ними носит неслучайный характер. В ряду динамики существует тенденция среднего уровня.

Также проверим гипотезу H0: об отсутствии тенденции в дисперсиях в исследуемом ряду динамики, которая сводится к проверке гипотезы о равенстве дисперсий двух нормально распределенных совокупностей. Гипотезу проверим с помощью F-критерия Фишера-Снедекора, расчетное значение которого определяется по следующей формуле: ()

Fрасч.= 2,582962905

Критическое значение критерия определяется по таблице F-распределение при уровне значимости и числе спеней свободы и , то есть Fкрит.= 6,59.

Гипотеза о равенстве дисперсий двух нормально распределенных совокупностей не отвергается, так как Fрасч< Fкрит В ряду динамики отсутствует тенденция дисперсии, то есть дисперсии различаются несущественно и расхождение между ними носит случайный характер. Это свидетельствует о том, что в течении девяти лет разброс объема производства валового внутреннего продукта относительно своего среднего уровня изменился несущественно.

Мы выявили, что изменение объема производства валового внутреннего продукта с течением времени имеет тенденцию. Для определения характера тенденции построим ее модель.

Сначала рассмотрим модель первого порядка, то есть попытаемся описать тенденцию изучаемого явления с помощью уравнения первой степени:

Реферат опубликован: 15/12/2009