Страница: 2/5
Например:
Число выживших и умерших больных.
Общее количество детей из поступивших за ночь в больницу больных.
Случайные величины, возможные значения которых непрерывно заполняют некоторый промежуток, называют непрерывными случайными величинами.
Например, ошибка взвешивания на аналитических весах.
Отметим, что современная теория вероятности преимущественно оперирует случайными величинами, а не событиями, на которые в основном опиралась "классическая" теория вероятностей.
КОРРЕЛЯЦИОННЫЕ МОМЕНТЫ. КОЭФФИЦИЕНТ КОРРЕЛЯЦИИ.
Корреляционные моменты, коэффициент корреляции - это числовые характеристики, тесно связанные во введенным выше понятием случайной величины, а точнее с системой случайных величин. Поэтому для введения и определения их значения и роли необходимо пояснить понятие системы случайных величин и некоторые свойства присущие им.
Два или более случайные величины, описывающих некоторое явление называют системой или комплексом случайных величин.
Систему нескольких случайных величин X, Y, Z, …, W принято обозначать через (X, Y, Z, …, W).
Например, точка на плоскости описывается не одной координатой, а двумя, а в пространстве - даже тремя.
Свойства системы нескольких случайных величин не исчерпываются свойствами отдельных случайных величин, входящих в систему, а включают также взаимные связи (зависимости) между случайными величинами. Поэтому при изучении системы случайных величин следует обращать внимание на характер и степень зависимости. Эта зависимость может быть более или менее ярко выраженной, более или менее тесной. А в других случаях случайные величины оказаться практически независимыми.
Случайная величина Y называется независимой от случайной величины Х, если закон распределения случайной величины Y не зависит от того какое значение приняла величина Х.
Следует отметить, что зависимость и независимость случайных величин есть всегда явление взаимное: если Y не зависит от Х, то и величина Х не зависит от Y. Учитывая это, можно привести следующее определение независимости случайных величин.
Случайные величины Х и Y называются независимыми, если закон распределения каждой из них не зависит от того, какое значение приняла другая. В противном случае величины Х и Y называются зависимыми.
Законом распределения случайной величины называется всякое соотношение, устанавливающее связь между возможными значениями случайной величины и соответствующими им вероятностями.
Понятие "зависимости" случайных величин, которым пользуются в теории вероятностей, несколько отличается от обычного понятия "зависимости" величин, которым пользуются в математике. Так, математик под "зависимостью" подразумевает только один тип зависимости - полную, жесткую, так называемую функциональную зависимость. Две величины Х и Y называются функционально зависимыми, если, зная значение одного из них, можно точно определить значение другой.
В теории вероятностей встречаются несколько с иным типом зависимости - вероятностной зависимостью. Если величина Y связана с величиной Х вероятностной зависимостью, то, зная значение Х, нельзя точно указать значение Y, а можно указать её закон распределения, зависящий от того, какое значение приняла величина Х.
Вероятностная зависимость может быть более или менее тесной; по мере увеличения тесноты вероятностной зависимости она все более приближается к функциональной. Т.о., функциональную зависимость можно рассматривать как крайний, предельный случай наиболее тесной вероятностной зависимости. Другой крайний случай - полная независимость случайных величин. Между этими двумя крайними случаями лежат все градации вероятностной зависимости - от самой сильной до самой слабой.
Вероятностная зависимость между случайными величинами часто встречается на практике. Если случайные величины Х и Y находятся в вероятностной зависимости, то это не означает, что с изменением величины Х величина Y изменяется вполне определенным образом; это лишь означает, что с изменением величины Х величина Y
имеет тенденцию также изменяться (возрастать или убывать при возрастании Х). Эта тенденция соблюдается лишь в общих чертах, а в каждом отдельном случае возможны отступления от неё.
Примеры вероятностной зависимости.
Выберем наугад одного больного с перитонитом . случайная величина Т - время от начала заболевания, случайная величина О - уровень гомеостатических нарушений. Между этими величинами имеется явная зависимость, так как величина Т является одной из наиболее главных причин, определяющих величину О.
В то же время между случайной величиной Т и случайной величиной М, отражающей летальность при данной патологии, имеется более слабая вероятностная зависимость, так как случайная величина хоть и влияет на случайную величину О, однако не является главной определяющей.
Реферат опубликован: 7/07/2008