Метрология, стандартизация и сертификация

Страница: 4/6

Вывод: При выборке N=10 среднеарифметическое значение имеет низкую погрешность, остальные значения погрешностей достаточно высоки (более 5%). При выборке N=5 среднеарифметическое значение также имеет низкую погрешность, остальные значения погрешностей высоки (более 50%), а дисперсия более 100%. В целом, можно заключить, что при N=10 меньших процент погрешностей, чем при N=5.

Учитывая вышеизложенное, можно сказать, что с увеличением числа измерений точность определения характеристик возрастает, как следствие, погрешности уменьшаются.

Контрольная карта N = 5

Контрольная карта N = 10

Контрольная карта N = 20

3. Интервальная оценка параметров распределения.

1. Определить границы доверительного интервала для единичного результата измерения по формуле для N = 20 для всех уровней Pдов.

2. Построить кривую .

3. Определить границы доверительного интервала для истинного значения

для N=20; 10; 5 для всех уровней Pдов.

4. Графически изобразить интервалы для N=20; 10; 5 при Pдов. = 0,9

Вывод: С уменьшением количества измерений границы доверительного интервала раздвигаются (для истинного значения случайной величины).

5. Исключение результатов, содержащие грубые погрешности.

Выборку из 20-ти измерений проверить на наличие результатов с погрешностями

методом «».

X20=2,084 Xmax = 2,75

Xmin=1,44

t=3

Pдов.=0,997

Неравенства являются верными, следовательно, в данной выборке (N=20) нет величин, содержащих грубую погрешность

2. Проверить выборки из 5-ти и 10-ти измерений на наличие результатов в погрешностями по методу Романовского для 3-х уровней доверительной вероятности. Определить при каком уровне доверительной вероятности появляется необходимость корректировать выборку.

Для N=10

Для N=5

Реферат опубликован: 9/04/2010