Сверхпроводимость

Страница: 6/11

Энергетические щели. Для развития динамической модели будем полагать, что второй электрон движется по поляризованному следу первого электрона. При этом возможны две ситуации: первая - импульсы электронов одинаковы по величине и направлению, то есть они образуют пару частиц с удвоенным импульсом, вторая - импульсы электронов одинаковы по величине и противоположны по направлению. Такую корреляцию электронов также можно рассматривать, как пару с нулевым импульсом. Если электроны, кроме того, будут иметь противоположные спины, то такая пара будет обладать уникальными свойствами.

Чрезвычайно интересным с точки зрения понимания механизма сверхпроводимости является вопрос о процессах энергообмена в свехпроводящем состоянии. В принципе ясно, что эти процессы связаны с разрушением куеперовских пар и энергетическими переходами в системе свободных электронов, причем как первое, так и второе определяется совокупностью свободных состояний, в которые могут перейти электроны. Сложность рассматриваемой задачи связана с тем, что образование куперовских пар приводит к изменению квантово - механических состояний неспаренных электронов.

Распределение электронов в нормальном металле описывается функцией Ферми-Дирака

f(E)=(e (E-m)/(kT)+ 1)-1.

Где k - постоянная Больцмана; m - химический потенциал.

При температуре Т=0 К полная функция распределения N(E)=f(E)g(E), определяющая число частиц с энергией Е, равна плотности числа состояний g(E), так как f(E)=1:

g(E)=((4pV)/ n3)(2m)3/2Е1/2.

График этой функции представлен на рис.6а

Взаимодействие электронов в сверхпроводнике с образованием куперовских пар приводит к тому, что небольшая область энергии вблизи уровня Ферми становится запрещенной для электронов - возникает энергетическая щель. В пределах этой щели нет ни одного разрешенного для неспаренных электронов энергетического уровня. Под влиянием взаимодействия между электронами, имеющими энергию, близкую к Еf, они оказываются как бы сдвинутыми относительно уровня Ферми (рис.6б).

рис.6 а) плотность состояний электронов в нормальном металле при Т =0. Занятое состояние заштриховано.

б) плотность состояний неспаренных электронов в сверхпроводнике. Занятое состояние заштриховано.

g(E) g(E)

а) б)

Еf Е Ef Е

рис.7 Зависимость ширины энергетической щели от температуры.

d(T)

d0

1

Т

1 Тc

При Т=0 К ширина щели максимальна (2d0»10-2 - 10-3 эВ), а все свободные (неспаренные) электроны находятся под щелью (на уровне с энергией меньше Еf). При повышении температуры часть куперовских пар разрушается, а некоторые неспаренные электроны “перескакивают” щель и заполняют состояния с энергией больше Еf. Ширина щели 2d(T) при этом уменьшается (рис.7).

Реферат опубликован: 20/11/2009