Сверхпроводящие материалы в электронике. Магнитометр на СКВИДах

Страница: 3/4

рение и индикацию отклика датчика

1.5мм на изменение внешнего магнитного

поля. Такая система представляет со-

600нм 600нм бой магнитометр.

20 нм

4. Сверхпроводящий материал – соединение Nb3Sn.

Соединение Nb3Sn имеет Тк=18.2К и Нк2=18.5 МА/m (m0Нк=23Тл) при 4.2К. Благодаря таким параметрам можно получить джозефсоновские переходы чувствительные как к малым полям 10-17Тл, так и к изменению больших полей »1Тл. Соединение имеет такую решетку: атомы ниобия расположены в местах, занятых на рисунке и образуют со своими ближайшими соседями три цепочки, перпендикулярные друг – другу:

Nb

Sn

Атомы ниобия в этих цепочках связаны дополнительными ковалентными связями. Цепочки ниобия в кристаллической структуре, для получения сверх проводящих свойств не должны быть нарушены, что может произойти при избытке атомов олова или при недостаточной степени порядка в кристаллической решетке. Диаграмма фазового равновесия системы Nb-Sn приведена на рисунке:

toC

2500

a+ж 2000

2000

a Ж

1500 Nb3Sn3

a+Nb3Sn 910-920

1000

Nb3Sn 840-860

500 805-820 NbSn7 232-234

Nb 0 10 20 30 40 50 60 70 80 90 100 Sn Соединение Nb3Sn хрупко и изделие из него не могут бать получены обычным металлургическим путем, т.е. выплавкой с последующей деформацией. Массивные изделия из этого соединения: цилиндры, пластины и т.д. получают, как правило, металлокерамическим методом, т.е. смешивая в соответствующих пропорциях порошки ниобия и олова, прессуя изделия нужной формы и нагревая их до температуры образования химического соединения Nb3Sn, обычно в интервале 960-1200O.

5. Получение джозефсоновских переходов.

Джозефсоновские туннельные переходы представляют собой две тонкие сверхпроводящие пленки разделенные барьерным слоем диэлектрика или полупроводника. Рассмотрим некоторые из методов получения переходов с диэлектрическим барьером. На тщательно очищенную подложку в вакууме наносится первая пленка сверхпроводящего соединения толщиной в несколько тысяч ангстрем.

Нанесение первой пленки осуществляется путем катодного распыления.

4

1

6

2 3 5

1. Катод

2. Распыляющий газ

3. К вакуумному насосу

4. Держатель с подложкой

5. Постоянное напряжение 4 кВ

6. ВЧ – генератор 3-300 МГц

Газовый разряд при низком давлении можно возбудить высокочастотным электрическим полем. Тогда в газовом промежутке, содержащим аргон, возникает тлеющий разряд. Образовавшиеся при этом положительные ионы, разгоняются электрическим полем, ударяются о катод распыляя сплав. Вылетающие с катода атомы осаждаются на подложке. В такой системе были достигнуты скорости осаждения до 1А/сек. При смещении на катоде – мишени 500В.

Для высокочастотного катодного распыления Nb3Sn необходим вакуум перед распылением 10-4Па, температура подложки 900OС, чистота напускаемого аргона 99,999%, его давление менее 1Па.

Для качества туннельного перехода большое значение имеет структура пленки. В напыленных пленках обычно сильно искажена кристаллическая решетка, и в них, как правило со временем происходят структурные изменения: течение дислокаций, деформация границ зерен, что может значительно ухудшить свойства туннельного перехода (например возникнуть закоротки).

Одним из способов устранения этих нежелательных явлений состоит во внесении в пленку примесей стабилизирующих их структуру. Так пленки образующие туннельный переход получались последовательным напылением In (49нм), Au (9нм), Nb3Sn (350нм) для нижнего электрода и Nb3Sn (300нм), Au(5нм), Nb3Sn(200нм) для верхнего электрода. После этого пленки выдерживались при температуре 75ОС в течении 2ч., что приводило к стабилизации свойств перехода.

Следующим важным этапом получения туннельного перехода является образование барьерного слоя, как правило, это слой окисла на поверхности первой пленки. Свойства туннельного перехода и его срок службы определяется прежде всего качеством барьерного слоя. Этот слой должен быть плотным, тонким (»2нм), ровным, не иметь пор и не меняться со временем при температурном циклировании.

Реферат опубликован: 13/06/2009