Страница: 1/6
«Все это хорошо разве что для спортивных аппаратов», – заключили они и отказались финансировать дальнейшие работы.
2. Закрытый плавательный пузырь (например, у трески). Такой пузырь полностью утратил связь с глоткой. Рыба способна уравнивать плотность тела с плотностью окружающей воды и сохранять нейтральную плавучесть путем автоматического или уменьшения количества газа в пузыре (ил. _).
Принцип использования «открытого плавательного пузыря» можно наблюдать у одноместной лодки (проницаемой), созданной на базе носителя «Пегас».
Отличительной особенностью описываемой лодки является эластичные емкости всплытия, расположенные по бокам корпуса. При плавании под водой емкости сложены вдоль бортов, когда же лодке необходимо придать дополнительную плавучесть для плавания на поверхности, они надуваются сжатым воздухом из специального баллона, расположенного внутри лодки вдоль корпуса носителя.
Может быть принцип работы эластичных емкостей был почерпнут в ходе наблюдения за морскими пузанами (иглобрюхи). В ответ на раздражение они раздуваются, заглатывая воздух в желудок и отходящий от него воздушный мешок и становятся раза в три больше обычного.
Не меньший интерес для конструкторов подводных средств движения представляют китообразные (включая дельфинов). Характерной особенностью всей группы китообразных является отсутствие брюшных плавников, функция которых у рыб в основном сводится к выполнению роли горизонтальных и вертикальных рулей. Совершенно справедливо отмечает В.А. Земский (1960г.), что исчезновение брюшных плавников у китов связано с образованием горизонтально поставленного хвостового плавника. Вертикальные колебания хвостовой лопасти создают силы, вращающие тело в вертикальной плоскости, а уплотненный латерально хвостовой стебель выполняет функции вертикального руля. Такой тип движителя принято называть машущим крылом. Далее мы рассмотрим его применение уже в подводной лодке.
Подводные лодки, приводящиеся в движение пульсацией плавников, должны открыть дверь в будущее новых возможностей субмарин (ил. _). Кристиан Бутнер задумал совершить однодневную экспедицию под льдами Северного Ледовитого океана. Свой принцип гибкого проталкивания он построил на способности туловища рыб, благодаря своей упругости и гибкости, уменьшать гидродинамическое сопротивление на 60%, таким образом революционизировав конструкцию субмарин. Бутнер снимает для субмарины с экипажем ценные параметры и качества с «Robotunas» - искусственной модели рыбы, которая подала идеи для вычисления движения группе ученых МИТ (Массачусетс). Она придумала движительный элемент – гибкий плавник (горизонтально поставленный, как у китообразных).
Как и у рыбы, этот плавник составляет примерно третью часть всей длины субмарины и представляет собой сандвич, образованный резиновой прослойкой и стекловолокном с искусственными мускулами – «Гибкость мускулов» (перевод с французского Хоменко М.).
Идея плавника в роли движителя отнюдь не нова, но ее никогда до конца не разрабатывали. Тот же основной принцип заложен в ласты, но пловцы пользуются ими недостаточно умело. Много лет назад Манфред Карри предложил лодку с плавниковым движителем. Разновидность такой лодки служила австралийским коммандос в Бирме во время Второй мировой войны. При колебаниях с частотой, совпадающей с нормальным ритмом дыхания, плавник обеспечивает плавное устойчивое движение (ил. _).
Один из возможных вариантов гибкого плавника представлен на ил. . Движитель смонтирован на обычных баллонах емкостью 70 фт3. Ребро атаки плавника движется из стороны в сторону с помощью пары мехов, где газ расходует свою энергию. Меха заключены во вспомогательный баллон – рабочий резервуар.
Суммарный объем двух мехов превышает максимальный объем вдоха пловца. Полный ход плавника окажется функцией объема газа, поглощаемого за один вдох, а скорость движения плавника будет равна ритму дыхания пловца. Таким образом, скорость определяется установившимся режимом дыхания.
Собственно плавник может быть выполнен из двух слоев прорезиненной ткани, прошитых по краям.
Располагая плавниковым движителем, пловец может возложить на него всю работу и дать себе передышку либо увеличить скорость, работая ластами.
Но вернемся к китообразным. Среди ряда биологических видов дельфинов и китов встречаются различные по гидродинамическим качествам. Одним из хорошо обтекаемых и высокоскоростных видов является китовидный дельфин. Анализ формы его тела показал, что контуры исследованного экземпляра в вертикальной и горизонтальной проекциях близки к известным аэродинамическим профилям (ил. ). «Ах, если бы прямо в небо, да из морских глубин!» В 70-х годах американский изобретатель Д. Рейд попытался в реальности осуществить мечту жуль-верновского персонажа Робура – создать машину, способную не только плавать в воде и подводой, но и взмывать в небо. 9 июля 1964 года аппарат Д. Рейда (ил. ) на глазах у многочисленной публики опустился на воду и, погрузившись на глубину 4 м, прошел около 4 миль со средней скоростью 7,5 км/ч. Затем, избавившись от водного балласта, всплыл, стал на поплавки и взмыл в небо со скоростью 100 км/ч. Однако и подобные показатели не устроили военных экспертов.
Реферат опубликован: 30/12/2007