Автоматизированное проектирование СБИС на базовых матричных кристаллах

Страница: 4/7

Таким образом, при применении БМК проектируемая схема описы-

вается на уровне логических элементов, а каждый элемент содержится

в библиотеке. Эта библиотека формируется заранее. Она должна обла-

дать функциональной полнотой для реализации широкого спектра схем.

Традиционно подобные библиотеки содержат следующие элементы: И-НЕ,

ИЛИ-НЕ, триггер, входные, выходные усилители и др. Для реализации

элемента используется одна или несколько ячеек кристалла, т. е.

размеры элемента всегда кратны размерам ячейки. Топология элемента

разрабатывается на основе конструкции ячейки и представляет собой

совокупность трасс, которые совместно с имеющимися на кристалле

постоянными частями реализуют требуемую функцию. Именно описание

указанных соединений и хранится в библиотеке.

В зависимости от того, на каких ячейках реализуются элементы,

можно выделить внешние (согласующие усилители, буферные схемы и

др.) и внутренние, или просто логические элементы. Если внешние

элементы имеют форму прямоугольников независимо от типа кристалла,

то для логических элементов сушествует большое разнообразие форм,

которое определяется типом макроячеек. Так, для макроячейки, пока-

╔════════╗ ╔════════╗ ╔═══╤════╗ ╔════════╗

║ ║ ║ ║ ║███│ ║ ║████████║

╟────┐ ║ ╟────────╢ ║███└────╢ ║████████║

║████│ ║ ║████████║ ║████████║ ║████████║

╚════╧═══╝ ╚════════╝ ╚════════╝ ╚════════╝

рис. 5

занной на рис. 4(a), возможные формы элементов приведены на рис.

5. При этом следует иметь в виду, что каждая форма может быть реа-

лизована с поворотом относительно центра макроячейки на угол,

кратный 90'. Для расширения возможностей наилучшего использования

площади кристалла для каждого логического элемента разрабатываются

варианты тапологии, позволяющие его реализовать в различных частях

макроячейки. Поскольку структура макроячейки обладает симметрией,

то эти варианты топологии, как правило, могут быть получены из ба-

зового вращением относительно осей симметрии.

При проектировании на уровне элементов существенными данными

являются форма логического элемента и расположение его выводов

(цоколевка).

СИСТЕМЫ АВТОМАТИЗИРОВАННОГО ПРОЕКТИРОВАНИЯ МАТРИЧНЫХ БИС

ПОСТАНОВКА ЗАДАЧИ ПРОЕКТИРОВАНИЯ

Задача конструирования матричных БИС состоит в переходе от

заданной логической схемы к ее физической реализации на основе

БМК. При этом исходные данные представляют собой описание логичес-

кой схемы на уровне библиотечных логических элементов, требования

к его функционированию, описание конструкции БМК и библиотечных

элементов, а также технологические ограничения. Требуется получить

конструкторскую документацию для изготовления работоспособной мат-

ричной БИС. Важной характеристикой любой электронной аппаратуры

является плотность монтажа. При проектировании матричных БИС плот-

ность монтажа определяется исходными данными. При этом возможна

ситуация, когда искомый вариант реализации не существует. Тогда

выбирается одна из двух альтернатив: либо матричная БИС проектиру-

ется на БМК больших размеров, либо часть схемы переносится на дру-

гой кристалл, т. е. уменьшается объем проектируемой схемы.

Основным требованием к проекту является 100%-ная реализация

соединений схемы, а традиционным критерием, оценивающими проект, -

суммарная длина соединений. Именно этот показатель связан с такими

эксплуатационными параметрами, как надежность, помехоустойчивость,

быстродействие. В целом задачи конструирования матричных БИС и пе-

чатных плат родственны, что определяется заранее заданной формой

элементов и высоким уровнем унификации конструкций. Вместе с тем

имеют место следующие отличия:

- элементы матричных БИС имеют более сложную форму (не пря-

Реферат опубликован: 24/06/2006