Страница: 2/5
В эволюции структур элементов БИС имеется постоянно действующая тенденция -- меньшение геометрических азмеров (топологических и структурных). В связи с этим необходимо прогнозировать количественное улучшение тех или иных эксплуатационных характеристик элементов БИС при уменьшении размеров их структур. Эта задача становится все более актуальной, поскольку уменьшение геометрических размеров достигается ценой больших затрат. В результате моделирования физических процессов могут быть определены статические и намические хаpактеистики и парамет ы элементов БИС. К основным характеристикам элементов относятся входные и выходные вольт-амперные характеристики, коэффициенты усиления, времена задержки переключения, рабочие частоты и т. п. Однако высокие значения параметров элементов, полученные в результате моделирования физических процессов в элементах, еще не гарантируют их эффективной работы в составе БИС. Яело в том, что эксплуатационные хаpактеpистики БИС определяются не только паpаметpами собственно элементов, но и в значительно мере организацией БИС, в частности видом их внутрисхемных соединений, средствами изоляции и т. п.
При освоении метода электронной литографии ставится задача определения степени увеличения быстродействия при его использовании в БИС определенного класса. Для решения подобной задачи необходимо, как минимум моделиpование технологических процесов с целью расчета паpаметров структуры элементов (первая часть задачи). В частности, следует провести моделиpование теpмических опеpаций и опеpации легирования. меньшение топологических размеров, обусловленное использованием электронной литографии, в соответствии с принципом пропорциональной миниатюризации влечет за собой и снижение структурных размеров (толщин слоев и глубин залегания р-n-переходов). Поэтому такое моделирование необходимо для получения исходных данных, в частности распределения концентраций легирующих примесей, при моделировании на приборном уровне. На следующем уpовне моделиpования (втоpая часть задачи) исследуют особенности функциониpования элементов с субмикронными размеpами с целью получения количественных параметров статических вольт-ампеpных характеристик и динамических паpаметpов . Следует подчеркнуть, что результаты этих численных экспериментов носят относительный характер. На тpетьем уровне моделироврния (тpетья часть задачи) исследуют электрические характеристики приборов с учетом взаимодеийствия между элелементами на модели БИС в целом или на ее фpагменте. Таким образом, получают количественные данные (абсолютные значения) по быстродействию, энергетические параметры и другие эксплуатационные характеристики. На основании полученных данных можно сделать аргументированные выводы о целесообразности применения технологических новшеств для конкретного изделия.
Иеpаpхическая система моделей, используемых в САПР элементов БИС
Сложившееся в практике проектирования разделение труда между разработчиками БИС, с одной стороны, и учет реальных возможностей современных ЭВМ -- с другой, диктуют иной метод моделирования. Общепринятым в настоящее время является метод, согласно которому на азличных у овнях модели гния используют различные модели. Это о еспечивает достижение разумного компромисса: сложность модели -точность моделирования. Кроме того, такой метод позволяет достаточно гибко и оперативно проводить сравнение результатов моделирования с экспериментальными данными и уточнять исходные значения, т. е. осуществлять итерационный процесс оптимизации приборных структур по электpофизическим параметpам с учетом заданных электрических паpаметpов, пpинятых огpаничений. Этот метод позволяет также соразмерять возможности численного моделирования по точности с точностью исходных данных. В условиях резкого увеличения размерности задач, характерного для этапа создания СБИС и УБИС, главной тенденцией развития методов моделирования стало совмстное пpименения моделей различных иерархических уровней. Идея многоуровневого моделирования структур элементов БИС подразумевает комплексное использование при проектировании различных моделей одного и того же объекта -полупроводникового прибора транзисторного типа. На этапе технологического молелирования применяют модели, имитирующие процессы ионного легирования диффузии, эпитаксиального (гомо, гетеpо, молекуляpного) наращивания и оксидиpования. Именно эти процессы в основном определяют распределение примесей в полупроводниковых структурах, глубины и конфигурации р-n-переходов. Кроме этих моделей используют модели процессов формирования поверхностных конфигураций (топологии). Такими моделями являются модели литогpафии, исключающие нанесение и тpавление пленок. Исходными данными для моделирования являются параметры режимов соответствующего технологического оборудования (время обработки, температура, наружнос давление, доза и энергия ионной бомбардировки и т. п. ) Общее назначение моделей технологических пpоцессов -- модели планарной технологии создания БИС -- состоит в получении информации о конфигуpации и pазмеpах областей, распределении примесей в полупроводниковой структуре. На основании этой информации по известным зависимостям опpеделяют элекpтpофизические параметры отдельных рабочих областей сpтуктуры, ырпример подвижность, время жизни носителей, скорость рекомбинации и т. п. Как объект моделиpовадця полупроводниковыи при- бор представляет собой тpехмеpную структуpу из полуоводниковых; диэлектрических и металлических областей со сложным распределением концентраций легиpующих примесеи и с различными электpофизическими паpаметpами Кроме того, особенностью объекта моделирования является множество физических процессов, протекающих в его структуре, и сложный характер взаимодействия с окружающей средой. Исходя из задач пpоектирования элементной базы в качестве основных определены следующйе классы моделей интегральных структур: 1) стpктуpно-физические 2) физико-топологические, 3) электpические. Совокупность моделей образует систему, взаимосвязи в которой определяются иерархическим принципом. Модели, используемые на каждом последующем более высоком уровне проектирования, отличаются большей степенью абстрагирования. Результаты моделиpования на более низком, уровне используют как исходные данные для моделирования на более высоком уpовне. Для каждого уровня характерны своя теоретическая основа и математический аппарат для синтеза и анализа моделей. На пеpвом уpовне моделиpование производят наиболее детально. Hа основе феноменологической теоpии полупроводников рассматривают физические процессы в полуоворниковой структуpе: дрейф, диффузию, генерацию и рекомбинацию основных и неосновных носителей заряда. Исходными данными являются структурно-технологические параметры (геометрия структуры и распределение концентрации примесей в ней). В pезультате моделирования получают пространственно-временные распpеделения подвижных носителей заряда и электрического потенциала в стpуктуpе.
Реферат опубликован: 15/06/2008