Страница: 3/6
Билет №7
Задание ЦА на языке логических схем алгоритмов (ЛСА) и построение на его основе СКУ и СВФ.
Язык ЛСА является аналитической интерпретацией языка ГСА и может быть использован для более компактной формы записи алгоритма функционирования ЦА. Запись алгоритма на языке ЛСА представляет собой конечную строку, состоящую из символов операторов А = {A0, A1, .,Ak}, логических условий X={x1, .,xl} и верхних и нижних стрелок, которым приписаны натуральные числа. В некоторых случаях используются логические, которые всегда принимают нулевое значение, т.е. тождественно ложные логические условия ω (оператор ω). После оператора ω всегда производится переход по стрелке, которая стоит справа от него. Если в ЛСА имеются циклы из логических условий, то вводится пустой оператор Ae(Ye), отмеченный пустым выходным сигналом. Этот оператор помещают в ЛСА путем замены стрелки i, стоящей в начале петли из логических условий на следующую группу символов ЛСА: ω↑k↓iAe(Ye)↓k.
Билет №12
Минимизация полностью определенных автоматов Мили методом Ауфенкампа и Хона. Задача минимизации. Алгоритм. Пример.
Основная идея этого метода состоит в разбиении всех состояний исходного автомата на попарно непересекающиеся классы эквивалентных состояний и замене каждого класса эквивалентности одним состоянием. Получающийся в результате минимизации автомат имеет столько же состояний, на сколько классов эквивалентности разбиваются состояния исходного автомата.
Состояния am и as являются эквивалентными, если λ(am, ξ) = λ(as, ξ) для всевозможных входных слов ξ.
Алгоритм: 1. Находим последовательные разбиения п1, п2, …, пк, пк+1 множества А на классы одно-, двух-, К-, К+1- эквивалентных состояний до тех пор, пока в каком-то (К+1) шаге не окажется, что пк = пк+1.
2. В каждом классе эквивалентности разбиения п выбирается по одному состоянию, в результате чего получаем множество А’ состояний минимального автомата S’ = {A’,z,w,σ’,λ’,a1’} эквивалентному автомату S.
3. Для определения функции переходов и выходов автомата S’ в таблице переходов и выходов вычеркиваются столбцы, соответствующие не вошедшим в А’ состояниям. В оставшихся столбцах не вошедшие в множество А состояния заменяются на эквивалентные.
4. В качестве начального состояния а1’ выбирается состояние из множества А’, эквивалентное состоянию а1. В частности, удобно за а1’ принимать само состояние а1.
Билет №13
Минимизация полностью определенных автоматов Мура методом Ауфенкампа и Хона. Задача минимизации. Алгоритм. Пример.
Основная идея этого метода состоит в разбиении всех состояний исходного автомата на попарно непересекающиеся классы эквивалентных состояний и замене каждого класса эквивалентности одним состоянием. Получающийся в результате минимизации автомат имеет столько же состояний, на сколько классов эквивалентности разбиваются состояния исходного автомата.
Состояния am и as являются эквивалентными, если λ(am, ξ) = λ(as, ξ) для всевозможных входных слов ξ.
Алгоритм: При минимизации полностью определенных автоматов Мура вводится понятие 0-эквивалентности состояний и разбиение множества состояний на 0-эквивалентные классы. 0-эквивалентными являются одинаково отмеченные состояния. Если два состояния автомата Мура 0-эквивалентны и под действием одинаковых входных сигналов попадают в 0-эквивалентные состояния, то они называются 1-эквивалентными. Все дальнейшие классы эквивалентности для автомата Мура определяются аналогично, как для автомата Мили
1. Находим последовательные разбиения п1, п2, …, пк, пк+1 множества А на классы одно-, двух-, К-, К+1- эквивалентных состояний до тех пор, пока в каком-то (К+1) шаге не окажется, что пк = пк+1.
2. В каждом классе эквивалентности разбиения п выбирается по одному состоянию, в результате чего получаем множество А’ состояний минимального автомата S’ = {A’,z,w,?’,?’,a1’} эквивалентному автомату S.
3. Для определения функции переходов и выходов автомата S’ в таблице переходов и выходов вычеркиваются столбцы, соответствующие не вошедшим в А’ состояниям. В оставшихся столбцах не вошедшие в множество А состояния заменяются на эквивалентные.
4. В качестве начального состояния а1’ выбирается состояние из множества А’, эквивалентное состоянию а1. В частности, удобно за а1’ принимать само состояние а1.
Билет №14
Алгоритм минимизации ЦА Мили с помощью таблицы пар. Задача минимизации. Алгоритм. Пример.
Алгоритм:
1. Находят одноэквивалентные разбиения состояний автомата
2. Строим таблицу пар. Строки таблицы пар помечены парами одноэквивалентных состояний, столбцы – входными сигналами. На пересечении строк и столбцов в таблице пар записываются пары состояний, которые являются первоприемниками по отношению к конкретному входному сигналу.
3. Последовательно по строкам отыскиваются отличающиеся пары состояний, которые отсутствуют в первом основном столбце таблицы пар. Если в какой-либо строке имеется хотя бы одна такая пара, то в этой строке зачеркивается пара в первом столбце. Такие строки, в которых зачеркнуты пары в первом столбце, называются выделенными строками.
Реферат опубликован: 24/03/2006