Страница: 3/5
Графики функций приведены ниже.
Задача 2: Для условия задачи 1 вычислить значения средней наработки до отказа в предположении, что :
а) На испытании находились только те образцы, которые отказали.
б) На испытании находилось =4000 образцов.
Закон распределения наработки до отказа принять показательный.
А)
где n - число отказавших объектов.
Б) ,
Где No - число испытуемых объектов,
- наработка до отказа i-го объекта.
А)
Б)
Задача 3: Используя функцию надежности, полученную в результате рачета в задаче 1, оценить, какова вероятность того, что РТУ, работавшие безотказно в интервале (0,200ч), не откажет в течении следующего интервала (200,400).
Где - вероятность безотказной работы в течении наработки от
Задача 4: По результатам эксплуатации 30 комплектов радиоприемных устройств получены данные об отказах, приведенные в таблице.
, ч |
0 100 |
100 200 |
200 300 |
300 400 |
400 500 |
|
30 |
33 |
28 |
26 |
27 |
, ч |
500 600 |
600 700 |
700 800 |
800 900 |
900 1000 |
|
28 |
26 |
26 |
28 |
27 |
Требуется :
1 Вычислить значения и построить график статистических оценок параметра потока отказов
2 Определить вероятность безотказной работы аппаратуры для интервала времени 0.5ч, 2ч, 8ч, 24ч, если наработка аппаратуры с начала эксплуатации
=1000 ч.
Где - параметр потока отказов
- число отказов N восстанавливаемых объектов на интервале наработки
I |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
w(t) , |
0.01 |
0.011 |
0.0093 |
0.0086 |
0.009 |
0.0093 |
0.0086 |
0.0086 |
0.0093 |
0.009 |
Реферат опубликован: 1/02/2008