Страница: 3/11
абоненты знают числа A и P;
отправитель генерирует случайное число и хранит его в секрете:
Ka
удовлетворяющее условию:
1 < Ka < P
вычисляет и передаёт получателю число B, определяемое последователньостью:
В = A Ka mоd(P)
Для сообщения M (1 < M < P):
выбирает случайное число L (1 < L < P), удовлетворяющее условию
( L , P - 1 ) = 1
вычисляет число
R = A L mоd(P)
решает относительно S
M = Ka * R + L * S mоd(P)
передаёт подписанное сообщение
[ M, R, S ]
получатель проверяет правильность подписи
A M = ( B R ) * ( R S ) mоd(P)
В этой системе секретным ключом для подписывания сообщений является число X, а открытым ключом для проверки достоверности подписи число B. Процедура проверки подписи служит также и для проверки правильности расшифрования, если сообщения шифруются.
Еще один интересный пример использования возведения в степень по модулю большого простого числа P для открытого шифрования предложил А.Shamir (один из авторов RSA). Как и в системе ЭльГамаля сообщения M представляются целыми числами из интервала 1 < M < P.
Передача сообщения происходит следующим образом:
абоненты знают числа P;
абоненты генерируют независимо друг от друга случайные числа:
Ka, Kb
удовлетворяющих условию:
1 < K < P
отправитель вычисляет значение и передаёт получателю:
C = M Ka mоd(P)
получатель вычисляет и передаёт отправителю число B, определяемое последовательностью:
D = C Kb mоd(P)
отправитель аннулирует свой шифр и отправляет полученную последовательность получателю
E=D(X-1) mоd(P) E = D Fa mоd(P)
где:
Fa = Ka -1
получатель расшифровывает полученное сообщение
M = E Fb mоd(P)
где:
Fb = Kb –1
Эта процедура ОШ может быть использована, например, для таких "экзотических" целей как игра в карты по телефону. Действительно, если игрок A желает "сдать" игроку B, скажем, 5 карт из 52 как при игре в покер, он зашифровывает обозначения всех карт и передает их игроку B:
Ca = Ma Ka mоd(P)
где
I=1,2, ,52
Игрок B выбирает из них 5, зашифровывает своим ключом 22 и возвращает игроку А:
Da = Ca Kb mоd(P)
где
I=1,2 .,5
Игрок A снимает с этих 5 карт свой шифр и выдает их игроку B. Игрок B расшифровывает полученные карты:
Ma = Ea Fb mоd (P)
При этом оставшаяся часть колоды C(6) .C(52) теперь находится у игрока B, но он не может раскрыть эти карты, т.к. они зашифрованы на ключе его партнера A. Остальные процедуры игры проделываются аналогично.
Эллиптические кpивые - математический объект, котоpый может опpеделен над любым полем (конечным, действительным, pациональным или комплексным). В кpиптогpафии обычно используются конечные поля. Эллиптическая кpивая есть множество точек (x,y), удовлетвоpяющее следующему уpавнению:
y2 = x3 + ax + b,
а также бесконечно удаленная точка. Для точек на кpивой довольно легко вводится опеpация сложения, котоpая игpает ту же pоль, что и опеpация умножения в кpиптосистемах RSA и Эль-Гамаля.
В pеальных кpиптосистемах на базе эллиптических уpавнений используется уpавнение
y2 = x3 + ax + b mod p,
где p - пpостое.
Пpоблема дискpетного логаpифма на эллиптической кpивой состоит в следующем: дана точка G на эллиптической кpивой поpядка r (количество точек на кpивой) и дpугая точка Y на этой же кpивой. Нужно найти единственную точку x такую, что Y = xG, то есть Y есть х-я степень G.
При ведении деловой переписки, при заключении контрактов подпись ответственного лица является непременным аттрибутом документа, преследующим несколько целей:
- Гарантирование истинности письма путем сличения подписи с имеющимся образцом;
- Гарантирование авторства документа ( с юридической точки зрения)
Выполнение данных требовани основывается на следующих свойствах подписи:
- подпись аутентична, то есть с ее помощью получателю документа можно доказать, что она принадлежит подписывающему;
- подпись неподделываема; то есть служит доказательством, что только тот человек, чей автограф стоит на документе, мог подписать данный документ, и никто иной.
- Подпись непереносима, то есть является частью документа и поэтому перенести ее на другой документ невозможно.
- Документ с подписью является неизменяемым.
- Подпись неоспорима.
- Любое лицо, владеющее образцом подписи может удостоверится, что документ подписан вледельцем подписи.
Реферат опубликован: 8/03/2008