Страница: 3/4
т.е. действительно, темп роста выпуска больше среднего темпа роста факторов . Таким образом, при а1+ а2 > 1 ПФ описывает растущую экономику.
Линией уровня на плоскости К, L, или изоквантой, называется множество тех точек плоскости, для которых F(K, L) =Х0=const. Для мультипликативной ПФ изокванта имеет вид :
или
т.е. является степенной гиперболой, асимптотами которой служат оси координат.
Для разных К, L, лежащих на конкретной изокванте, выпуск равен одному и тому же значению X0, что эквивалентно утверждению о взаимозаменяемости ресурсов.
Поскольку на изокванте F(K, L) = Х0 = const, то
В этом соотношении , поэтому dK и dL имеют разные знаки: если dL<0 что означает сокращение объема труда, то dK>0, т.е выбывший в объеме труд замещается фондами в объеме dK.
Поэтому естественно следующее определение, вытекающее из .
Предельной нормой замены SK труда фондами называется отношение модулей дифференциалов ОФ и труда:
соответственно , предельная норма замены SL фондов трудом
при этом Sk SL=1
Для мультипликативной функции норма замещения труда фондами пропорциональна фондовооруженности:
,
что совершенно естественно: недостаток труда можно компенсировать его лучшей фондовооруженностью.
Изоклиналями называются линии наибольшего роста ПФ. Изоклинали ортогональны линиям нулевого роста, т.е. изоквантам. Поскольку направление наибольшего роста в каждой точке (К, L) задается градиентом
grad , то уравнение изоклинали записывается в форме
В частности, для мультипликативной ПФ получаем,
поэтому изоклиналь задается дифференциальным уравнением,
, которое имеет решение
,
где (L0; К0) - координаты точки, через которую проходит изоклиналь. Наиболее простая изоклиналь при а = 0 представляет собой прямую
На рис. 1 изображены изокванты и изоклинали мультипликативной ПФ.
При изучении факторов роста экономики выделяют экстенсивные факторы роста (за счет увеличения затрат ресурсов, т.е. увеличения масштаба производства) и
рис. 1
интенсивные факторы роста (за счет повышения эффективности использования ресурсов).
Возникает вопрос: как с помощью ПФ выразить масштаб и эффективность производства? Это сравнительно легко сделать, если выпуск и затраты выражены в соизмеримых единицах, например представлены в соизмеримой стоимостной форме. Однако проблема соизмерения настоящего и прошлого труда до сих пор не решена удовлетворительным образом. Поэтому воспользуемся переходом к относительным (безразмерным) показателям.В относительных показателях мультипликативная ПФ записывается следующим образом:
те X0, K0 L0 — значения выпуска и затрат фондов и труда в базовый год.
Безразмерная форма , указанная выше , легко приводится к первоначальному виду
Таким образом, коэффициент
получает естественную интерпретацию - это коэффициент, который соизмеряет ресурсы с выпуском. Если обозначить выпуск и ресурсы в относительных (безразмерных) единицах измерения через x, k, l, то ПФ в форме
запишется так:
Найдем теперь эффективность экономики, представленной ПФ . Напомним, что эффективность — это отношение результата к затратам. В нашем случае два вида затрат: затраты прошлого труда в виде фондов k и настоящего труда l. Поэтому имеются два частных показателя эффективности: -фондоотдача , - производитель труда.
Реферат опубликован: 13/02/2010