Внеклассная работа по математике

Страница: 2/3

Математические вечера

Подготовка вечера

Наиболее удобно проводить вечера для учащихся параллельных классов.

Подготовка вечера – очень кропотливое дело. Поэтому начинающему учителю лучше ориентироваться одного такого вечера в течение года. В процессе подготовки к вечеру нужно предоставить возможности для самодеятельности учеников, для проявления их самостоятельности и инициативы.

Учитывая то, что основная цель вечера – повышение интереса к математике, желательно привлечь к его организации как можно больше учащихся. Если ученику будет поручена подготовка какого-то номера программы, то его интерес к вечеру значительно возрастет.

За несколько дней до вечера вывешивается красочное объявление о месте и времени проведения вечера и его программе. Можно пригласить учеников других классов. Желательно, чтобы пригласительные билеты были со вкусом оформлены.

Программа должна быть разнообразной и содержательной. Нужно учитывать тягу детей к яркому, таинственному и загадочному. С другой стороны, недопустимо, чтобы в сознании учащегося то интересное и забавное, занимательное, с чем он знакомится на вечере, противопоставлялось тому, что он изучает на уроках. Например, если показывается на вечере прием быстрого счета, то должно указано, что при выводе этого приема используется такая-то формула школьно курса алгебры и т. п.

Обычно длительность вечера два-три часа.

Зал или класс, где проводится вечер, украшают портретами математиков, а также плакатами математического содержания: высказывания выдающихся людей о математике, шутками, геометрическими иллюзиями, задачами. Большинство плакатов можно украсить рисунками, привлекающими к себе внимание учеников.

Содержание вечера

Часто в программу включают: рассказы, беседы, доклады на математические или историко-математические темы, фокусы, развлечения, задачи.

Обычно вечер начинается с доклада на математическую или историческую тему. Заслуживают предпочтение такие темы, в которых любой присутствующий ученик мог бы разобраться «без бумаги и карандаша», т. е. темы, не связанные со сколько-нибудь значительными выкладками. А большой доклад для вечера целесообразно разбить на несколько частей и распределить между несколькими учениками.

Приемы счета. Укажем ряд эффективных приемов счета, которые можно показать на вечере.

1. «Назовите любое двухзначное число, кратное 9. Я его быстро умножу на 12 345 679» (например назовут 54). Ответ: 12 345 679ž54=666 666 666. Объяснение: Делим число, названное учеником, на 9, получаем однозначное число и выписывает его 9 раз подряд.

2. «Возведите в куб любое двухзначное число. И я в уме извлеку из результата кубический корень» (например это 328 509). Ответ: 3Ö328 509=69. Объяснение: Я помню кубы 9 первых натуральных чисел. Замечаю, что куб каждого из крайних двух из этих девяти чисел (1 и 9) и средних трех (4, 5, 6) оканчивается той же цифрой, какой записывается само число, а куб каждого из остальных четырех чисел – дополнением этой цифры до 10. Число 328 509 оканчивается цифрой 9. Значит, и его кубический корень оканчивается 9. Кроме того, 63=216 меньше 328, 73=343 больше 328. Значит первая цифра 6.

Математические софизмы. На вечере можно предложить со сцены не громоздкий софизм.

Спичка вдвое длиннее телеграфного столба!. «И я берусь доказать это, и притом каждая спичка длиннее телеграфного столба ровно вдвое.

Пусть а – длина спички, б – столба. Обозначим б–а=с, б=а+с. Перемножим эти равенства почленно. Получим:

б2-аб-са+с2.

Вычтем из обеих частей бс. Получим:

б2­­­­­-аб-бс=са+с2-бс

б(б-а-с)=с(а+с-б)

б(б-а-с)=-с(б-а-с).

Отсюда б=-с, но с=б-а, так что –с=а-б.

Таким образом, б=а-б, а=2б.

На что такое а? Длина спички. А б – это длина столба. Итак: спичка вдвое длиннее телеграфного столба.

Этому софизму можно было бы придать другую фабулу, например: «В наперстке вмещается вдвое больше воды, чем в ведре»; «Горошина вдвое тяжелее земного шара» и т.п.

Задачи на вечере. Математический вечер не стоит превращать в вечер решения задач. Однако занимательные задачи в разных формах желательно на вечере предлагать учащимся.

1. решение задач с эстрады;

2. инсценировка задач с занимательной фабулой;

3. инсценировка процесса решения задач;

4. математическая викторина;

5. задачи на плакатах.

Математические стихотворения

Пятая задача. Когда Гераклом Герион Был в жаркой битве сокрушен, То победителю в награду Быков отличных было стадо; Быков на луг отправил он И погрузился в крепкий сон.

Реферат опубликован: 11/01/2008