Азбука живой материи. Белки

Страница: 3/8

Действительно, полипептидные цепи очень часто образуют спираль, закрученную в правую сторону. Это первый, самый низкий уровень про­странственной организации белко­вых цепочек Здесь-то и начинают иг­рать роль слабые взаимодействия «бусинок»-аминокислот: группа С=0 и группа N—H из разных пептидных связей могут образовывать между со­бой водородную связь. Оказалось, что в открытой Полингом и Кори спирали такая связь образована меж­ду группой С=0 каждой г-й аминокис­лоты и группой N—H (i + 4)-й амино­кислоты, т. е. между собой связаны аминокислотные остатки, отстоящие друг от друга на четыре «бусинки». Эти водородные связи и стабилизиру­ют такую спираль в целом. Она полу­чила название a.-спирали.

Позднее выснилось, что а-спираль — не единственный способ ук­ладки аминокислотных цепочек. По­мимо спиралей они образуют ещё и слои. Благодаря всё тем же водород­ным связям между группами С=0 и N—H друг с другом могут «слипаться» сразу несколько разных фрагментов одной полипептидной цепи. В резуль­тате получается целый слой — его на­звали ^-слоем.

В большинстве белков а-спирали и р-слои перемежаются всевозможными изгибами и фрагментами цепи без какой-либо определённой структуры. Когда имеют дело с пространствен­ной структурой отдельных участков белка, говорят о вторичной структу­ре белковой молекулы.

БЕЛОК В ПРОСТРАНСТВЕ

Для того чтобы получить полный «портрет» молекулы белка, знания первичной и вторичной структуры недостаточно. Эти сведения ещё не дают представления ни об объёме, ни о форме молекулы, ни тем более о расположении участков цепи по отношению друг к другу. А ведь все спирали и слои каким-то образом размещены в пространстве. Общая пространственная структура поли-пептидной цепи называется третич­ной структурой белка.

Первые пространственные модели молекул белка — миоглобина и гемо­глобина — построили в конце 50-х гг. XX в. английские биохимики Джон Ко-удери Кендрю (родился в 1917 г.) и Макс Фердинанд Перуц (родился в 1914 г.). При этом они использовали данные экспериментов с рентгенов­скими лучами. За исследования в об­ласти строения белков Кендрю и Перуц в 1962 г. были удостоены Нобе­левской премии. А в конце столетия была определена третичная структура уже нескольких тысяч белков.

При образовании третичной струк­туры белка наконец-то проявляют активность R-группы — боковые це­пи аминокислот. Именно благодаря им «слипаются» между собой боль­шинство «бусинок»-аминокислот, придавая цепи определённую форму в пространстве.

В живом организме белки всегда находятся в водной среде. А самое большое число основных аминокис­лот — восемь — содержат неполяр­ные R-группы. Разумеется, белок стремится надёжно спрятать внутрь своей молекулы неполярные боковые цепи, чтобы ограничить их контакт с водой. Учёные называют это воз­никновением гидрофобных взаимо­действий (см. статью «Мельчайшая единица живого»).

Благодаря гидрофобным взаимо­действиям вся полипептидная цепоч­ка принимает определённую форму в пространстве, т. е. образует третич­ную структуру.

В молекуле белка действуют и дру­гие силы. Часть боковых цепей основ­ных аминокислот заряжена отрица­тельно, а часть — положительно. Так как отрицательные заряды притяги­ваются к положительным, соответст­вующие «бусинки» «слипаются». Элек­тростатические взаимодействия, или, как их называют иначе, солевые мос­тики, — ещё одна важная сила, ста­билизирующая третичную структуру.

У семи основных аминокислот есть полярные боковые цепи. Между ними могут возникать водородные связи, тоже играющие немалую роль в поддержании пространственной структуры белка.

Между двумя аминокислотными остатками цистеина иногда образу­ются ковалентные связи (—S—S—), которые очень прочно фиксируют расположение разных участков бел­ковой цепи по отношению друг к другу. Такие связи называют дисуль-фидными мостиками. Это самые не­многочисленные взаимодействия в белках (в некоторых случаях они во­обще отсутствуют), зато по прочно­сти они не имеют равных.

ВЫСШИЙ УРОВЕНЬ ПРОСТРАНСТВЕННОЙ ОРГАНИЗАЦИИ БЕЛКОВ

Молекула белка может состоять не из одной, а из нескольких полипептидных цепей. Каждая такая цепь представляет собой самостоятельную пространственную структуру — субь-единицу. Например, белок гемогло­бин состоит из четырёх субъединиц, которые образуют единую молекулу, располагаясь в вершинах почти пра­вильного тетраэдра. Субъединицы «прилипают» друг к другу благодаря тем же самым силам, что стабилизи­руют третичную структуру. Это гид­рофобные взаимодействия, солевые мостики и водородные связи.

Если белок состоит из нескольких субъединиц, говорят, что он обладает четвертичной структурой. Такая структура представляет собой высший уровень организации белковой моле­кулы. В отличие от первых трёх уров­ней четвертичная структура есть дале­ко не у всех белков. Приблизительно половина из известных на сегодняш­ний день белков её не имеют.

Реферат опубликован: 6/01/2007