Страница: 2/3
Температура плавления оксида алюминия 2053 °С (а кипения вообще больше 3000 °С ). Для сравнения - температура плавления самого алюминия 660,4 °С. Поэтому и возникали трудности с добычей алюминия, несмотря на его широкое распространение.
Оксид алюминия Al2O3 получают либо сжиганием алюминия путем вдувания порошка алюминия в пламя горелки,
4Al + 3O2 ® 2Al2O3
либо превращением по схеме
HCl или H2SO4 |
NaOH или KOH |
t °С | ||||
Al |
----> |
соль |
----> |
Al(OH)3 |
----> |
Al2O3 |
Чистый алюминий добывается методом электролиза раствора глинозема в расплавленном криолите (6-8% Al2O3 и 94-92% Na3AlF6) или электролизом AlCl3.
Гидрооксид алюминия Al(OH)3 используется для крашения тканей, для изготовления керамики и как нейтрализующий агент[1].
На практике очень широкое применение получил так называемый термит - смесь оксида железа Fe3O4 с алюминием. При поджоге данной смеси с помощью магниевой ленты происходит бурная реакция с обильным выделением тепла.
8Al + 3Fe3O4 ® 4Al2O3 + 9Fe
Данный процесс используют при сварке. Иногда для получения некоторых чистых металлов в свободном виде.
Есть также иное использование данной реакции - если обратить внимание на соединение железа до реакции и его состояние после реакции, то можно заметить, что до начала реакции это был оксид железа - а именно - ржавчина, а после реакции - чистое восстановленное железо. Этот эффект используют для химической защиты и удаления ржавчины.
Поэтому алюминий очень широко используется в технике не только как основа легких сплавов, но и как раскислитель сталей, для восстановления металлов из оксидов (алюмотермия - см. пример выше), в электротехнике.
Алюминий в технике также используют для насыщения поверхности стальных и чугунных изделий с целью защиты этих изделий от коррозии - этот процесс называется алитирование.
Тонкая алюминиевая фольга используется как упаковочный материал для продуктов питания (например шоколада), более толстая - для изготовления банок для напитков.
Алюминиевые сплавы обладают малой плотностью (2,5 - 3,0 г/см3) в сочетании с достаточно хорошими механическими свойствами и удовлетворительной устойчивостью к окислению. По своим прочностным характеристикам и по износостойкости они уступают сталям, некоторые из них также не обладают хорошей свариваемостью, но многие из них обладают характеристиками, превосходящими чистый алюминий.
|
Эти воздушные конструкции выполнены из сплавов алюминия |
Особо выделяются алюминиевые сплавы с повышенной пластичностью, содержащие до 2,8% Mg и до 2,5% Mn - они обладают большей, чем чистый алюминий прочностью, легко поддаются вытяжке, близки по коррозионной стойкости к алюминию.
Дуралюмины - от французского слова dur - твердый, трудный и aluminium - твердый алюминий. Дуралюмины - сплавы на основе алюминия, содержащие:
· 1,4-13% Cu,
· 0,4-2,8% Mg ,
· 0,2-1,0% Mn ,
· иногда 0,5-6,0% Si ,
· 5-7% Zn ,
· 0,8-1,8% Fe ,
· 0,02-0,35% Ti и др.
Дуралюмины - наиболее прочные и наименее коррозионно-стойкие из алюминиевых сплавов. Склонны к межкристаллической коррозии. Для защиты листового дуралюминия от коррозии его поверхность плакируют[2] чистым алюминием. Они не обладают хорошей свариваемостью, но благодаря своим остальным характеристикам применяются везде, где необходима прочность и легкость. Наибольшее применение нашли в авиастроении для изготовления некоторых деталей турбореактивных двигателей.
Реферат опубликован: 3/01/2010