Метод конечных элементов

Страница: 3/3

Выражение (19) определяет матрицу [Km] в глобальной системе координат.

Перепишем (16), используя обозначения блоков (15) матрицы

(20)

где суммирование распространяется на все стержни, соединяющиеся с узлом i. Полная система уравнений равновесия для стержневой системы с N узлами в матричной форме примет вид:

(21)

Если какой-либо узел Р на связан ни с одним стержнем с узлом r, то блок [Kpr] в матрице (21) будет тождественно равен нулю. Таком образом, умея вычислять блоки [Kqq] и [Kqr] для отдельных стержней, на основании информации о системе в целом можно построить систему уравнений равновесия (21) относительно искомых перемещений {d}. Вектор внешних сил {F} предполагается известным.

Наличие опорных закреплений приводит к тому, что некоторые компоненты вектора d заранее известны. Соответствующие компоненты должны быть исключены из искомого вектора {d}, равно как и столбцы с теми же номерами из матрицы (21). Уравнение равновесия для закрепленных узлов не составляются, что равносильно уменьшению числа уравнений (числа строк в матрице) системы (21).

После этого можно решить систему (21) относительно {d}. Обычно для решения используются прямые методы, типа метода последовательного исключения неизвестных Гаусса. Найдя {d}, по формулам (14) или (19) можно определить усилия во всех стержневых элементах системы, в том числе и стержнях, примыкающим к опорным узлам. На этом заканчивается этап статического расчета стержневой конструкции.

Литература:

Геммерлинг Г.А. Система автоматизированного проектирования стальных строительный конструкций. – М.: Стройиздат, 1987г.

Реферат опубликован: 26/11/2008