Страница: 8/9
Пламенно - ионизационный детектор (ПИД). Схема ПИД приведена на рис. 9. Выходящий из колонки газ смешивается с водородом и поступает в форсунку горелки детектора.
Образующиеся в пламени ионизованные частицы заполняют межэлектродное пространство, в результате чего сопротивление снижается, ток резко усиливается. Стабильность и чувствительность ПИД зависит от подходящего выбора скорости потока всех используемых газов (газ-носитель ~30—50 мл/мин, H2 ~30 мл/мин, воздух ~300—500 мл/мин). ПИД реагирует практически на все соединения, кроме Н2, инертных газов, О2, N2, оксидов азота, серы, углерода, а также воды. Этот детектор имеет широкую область линейного отклика (6—7 порядков), поэтому он наиболее пригоден при определении следов.
Метод ГХ — один из самых современных методов многокомпонентного анализа, его отличительные черты — экспрессность, высокая точность, чувствительность, автоматизация. Метод позволяет решить многие аналитические проблемы. Количественный ГХ анализ можно рассматривать как самостоятельный аналитический метод, более эффективный при разделении веществ, относящихся к одному и тому же классу (углеводороды, органические кислоты, спирты и т.д.). Этот метод незаменим в нефтехимии (бензины содержат сотни соединений, а керосины и масла — тысячи), его используют при определении пестицидов, удобрений, лекарственных препаратов, витаминов, наркотиков и др. При анализе сложных многокомпонентных смесей успешно применяют метод капиллярной хроматографии, поскольку число теоретических тарелок для 100 м колонки достигает (2—3)*105.
Возможности метода ГХ существенно расширяются при использовании реакционной газовой хроматографии (РГХ), вследствие того что многие нелетучие, термонеустойчивые или агрессивные вещества непосредственно перед введением в хроматографическую колонку могут быть переведены с помощью химических реакций в другие — более летучие и устойчивые. Химические превращения осуществляют чаще на входе в хроматографическую колонку, иногда в самой колонке или на выходе из нее перед детектором. Значительно удобнее проводить превращения вне хроматографа. Недостатки метода РГХ связаны с появлением новых источников ошибок и возрастанием времени анализа.
Реакционную хроматографию часто используют при определении содержания микроколичеств воды. Вода реагирует с гидридами металлов, с карбидом кальция или металлическим натрием и др., продукты реакции (водород, ацетилен) детектируются с высокой чувствительностью пламенно-ионизационным детектором. К парам воды этот детектор малочувствителен. Широко применяют химические превращения в анализе термически неустойчивых биологических смесей. Обычно анализируют производные аминокислот, жирных кислот С10—C20, сахаров, стероидов. Для изучения высокомолекулярных соединений (олигомеры, полимеры, каучуки. смолы и т.д.) по продуктам их разложения используют пиролизную хроматографию. В этом методе испарение пробы заменяют пиролизом. Карбонаты металлов можно проанализировать по выделяющемуся диоксиду углерода при обработкеих кислотами.
Методом газовой хроматографии можно определять металлы, переводяих в летучие хелаты. Особенно пригодны для хроматографирования хелаты 2-, 3- и 4-валентных металлов с b-дикетонами. Лучшие хроматографические свойства проявляют b-дикетонаты Be(II), Al(III), Sc(III), V(III), Cr(III). Газовая хроматография хелатов может конкурировать с другими инструментальными методами анализа.
ГХ используют также в препаративных целях для очистки химических препаратов, выделения индивидуальных веществ из смесей. Метод широко применяют в физико-химических исследованиях: для определения свойств адсорбентов, термодинамических характеристик адсорбции и теплот адсорбции, величин поверхности твердых тел, а также констант равновесия, коэффициентов активности и др.
Реферат опубликован: 15/09/2009