Страница: 4/8
где В- вектор, соответствующий передаваемой кодовой комбинации. При S=0 декодер принимает решение об отсутствии ошибок, а при S≠O - о наличии ошибок. По конкретному виду синдрома можно в пределах корректирующей способности кода указать на ошибочные символы и их исправить.
Декодер линейного кода (рис. на следующей стр.) состоит из k- разрядного сдвигающего регистра, (п-k) блоков сумматоров по модулю 2, схемы сравнения, анализатора ошибок и корректора. Регистр служит для запоминания информационных символов принятой кодовой последовательности, из которых в блоках сумматоров формируются проверочные символы. Анализатор ошибок по конкретному виду синдрома, получаемого в результате сравнения формируемых на приемной стороне и принятых проверочных символов, определяет места ошибочных символов. Исправление информационных символов производится в корректоре. Заметим, что в общем случае при декодировании линейного кода с исправлением ошибок в памяти декодера должна храниться таблица соответствий между синдромами и векторами ошибок. С приходом каждой кодовой комбинации декодер должен перебрать всю таблицу. При небольших значениях (п-k) эта операция не вызывает затруднений. Однако для высокоэффективных кодов длиной п, равной нескольким десяткам, разность (п-k) принимает такие значения, что перебор таблицы оказывается практически невозможным. Например, для кода (63, 51), имеющего кодовое расстояние d=5, таблица состоит из 2^12 = 4096 строк.
Задача заключается в выборе наилучшего (с позиции того или иного критерия) кода. Следует заметить, что до сих пор общие методы синтеза оптимальных линейных кодов не разработаны.
Циклические коды.
Циклические коды относятся к классу линейных систематических. Поэтому для их построения в принципе достаточно знать порождающую матрицу.
Можно указать другой способ построения циклических кодов, основанный на представлении кодовых комбинаций многочленами b(х) вида:
Каждый циклический код (n, k) характеризуется так называемым порождающим многочленом. Им может быть любой многочлен р(х) степени n-k. Циклические коды характеризуются тем, что многочлены b(x) кодовых комбинаций делятся без остатка на р(х). Поэтому процесс кодирования сводится к отысканию многочлена b(x) по известным многочленам a(х) а р(х), делящегося на р(х), где a(х)- многочлен степени k-1, соответствующий информационной последовательности символов.
Реферат опубликован: 27/03/2007