Метод Зойтендейка

Страница: 1/7

Содержание:

Введение 2

Случай линейных ограничений 2

Геометрическая интерпретация возможного

направления спуска 2

Построение возможных направлений спуска 3

Задачи с нелинейными ограничениями-неравенствами 9

Алгоритм метода Зойтендейка (случай нелинейных

ограничений-неравенств) 11

Учет нелинейных ограничений-равенств 14

Использование почти активных ограничений 15

Список литературы 18

Введение

Я хочу описать Вам метод возможных направлений Зойтендейка. На каждой итерации метода строится возможное направление спуска и затем проводится оптимизация вдоль этого направления.

Следующее определение вводит понятие возможного направления спуска.

ОПРЕДЕЛЕНИЕ. Рассмотрим задачу минимизации f(х) при условии, что хÍS, где f: ЕnàЕ1, а S—непустое мно­жество из Еn. Ненулевой вектор d называется возможным направлением в точке хÍS, если существует такое d>0, что х+lxÍS для всех lÍ(0,d). Вектор d называется возможным направлением спуска в точке xÍS, если существует такое d>0, что f(х+ld)<f(x) и х+ldÍS для всех lÍ(0, 6).

Случай линейных ограничений

Вначале рассмотрим случай, когда допустимая область S опре­делена системой линейных ограничений, так что рассматривае­мая задача имеет вид

минимизировать f(х)

при условиях Ах£b,

Ех=е.

Здесь А—матрица порядка m ´ n, Е—матрица порядка l ´ n, b есть m-мерный вектор, а е есть l-мерный вектор. В следующей лемме приводятся соответствующие характеристики допустимой области и формулируются достаточные условия для существо­вания возможного направления спуска. В частности, вектор d является возможным направлением спуска, если A1d£0, Еd=0 и Ñf(х)Td<0.

ЛЕММА. Рассмотрим задачу минимизации f(х) при условиях Ах£b и Ех=е. Пусть х—допустимая точка, и предположим, что А1x=b1 и А2x<b2, где АT=(А1T, А2T), а bT=(b1T, b2T). Тогда ненулевой вектор и является возможным направлением в точке х в том и только в том случае, если A1d£0 и Еd=0. Если, кроме того, Ñf(х)Td<0, то d является возможным направлением спуска.

Геометрическая интерпретация возможного направления спуска

Проиллюстрируем теперь геометрически на примере множество возможных направлений спуска.

ПРИМЕР

Минимизировать при условиях

(x1-6)2+(x2-2)2

-x1+2x2£4

3x1+2x2£12

-x1£0

-x2£0

Возьмем х=(2, 3)T и заметим, что первые два ограничении являются активными в этой точке. В частности, матрица А1 из леммы равна А1=[-13 22]. Следовательно, вектор d является возможным направлением тогда и только тогда, когда А1d£0, т.е. в том и только в том случае, если

-d1+2d2£0,

3d1+2d2£0.

На рис. 1, где начало координат перенесено в точку х, изо­бражена совокупность этих направлений, образующая конус возможных направлений. Заметим, что если сдвинуться на не­большое расстояние от точки х вдоль любого вектора d, удов­летворяющего двум приведенным выше неравенствам, то оста­немся в допустимой области.

Если вектор d удовлетворяет неравенству 0>Ñf(х)Td=-8d1+2d2, то он является направлением спуска. Таким образом, совокупность направлений спуска определяется открытым полупространством {(d1,d2}: -8d1+2d2<0}. Пересече­ние конуса возможных направлений с этим полупространством задает множество всех возможных направлений спуска.

Реферат опубликован: 8/06/2009