Метод Зойтендейка

Страница: 3/7

Основной этап. Шаг 1. Пусть задан хk. Предположим, что АT=(А1T, А2T), а bT=(b1T, b2T), так что . Взять в качестве dk оптимальное решение следующей задачи (заметим, что вместо этой задачи можно использовать Р2 или РЗ):

Если , то остановиться; хk—точка Куна—Таккера, В противном случае перейти к шагу 2.

Шаг 2. Положить равным оптимальному решению еле-., дующей задачи линейного поиска:

где определяется в соответствии с (1). Положить , определить новое множество активных ограниче­ний в и переопределить А1 и А2. Заменить k на k+1 и перейти к шагу 1.

Заметим, что . Решим задачу методом Зойтендейка, взяв в качестве начальной точки . Каждая итерация алгоритма содержит решение подзадачи, определенной в описании шага 1, для нахождения направления, а затем линейный поиск вдоль этого направления.

Итерация 1

Поиск направления. В точке имеем . Кроме того, в точке x1 активными являются толь­ко ограничения неотрицательности переменных, так что l = {3,4}. Задача для нахождения направления имеет вид

Рис. 2

Эту задачу можно решить симплекс методом для решения задач линейного программирования. На рисунке 2 показана допустимая область этой задачи.

Линейный поиск. Теперь, двигаясь из точки (0, 0) вдоль направления (1, 1), нужно найти точку, в которой значение це­левой функции минимально. Любая точка может быть записана в виде , а целевая функция в этой точке принимает вид . Максимальное значение коэффициента l, для ко­торого точка допустима, вычисляется по формулам и равно

Следовательно, если —новая точка, то значение по­лучается из решения следующей задачи одномерной миними­зации:

минимизировать —10+2

при условии 0£ £ .

Очевидно, что решением является , так что

Итерация 2

Поиск, направления. В точке имеем .

Рис 3.

Кроме того, множество активных ограничений в точке х2 равно l={2}, так что направление движения получается из решения следующей задачи:

минимизировать

при условии

Читатель может проверить на рис. 3, что оптимальным реше­нием этой задачи линейного программирования является точка , а соответствующее значение целевой функции равно .

Линейный поиск. При начальной точке х2 любая точка в на­правлении d2 может быть представлена в виде Соответствующее ей значение целевой функ­ции равно

Максимальное значение l для которого точка Х2+ld2 остается допустимой, определяется в соответствия с (1) следующим образом:

Таким образом, в качестве ^ берется оптимальное решение сле­дующей задачи:

минимизировать

при условии

Оптимальным решением этой задачи является , так что

Реферат опубликован: 8/06/2009