Страница: 6/6
Как видно из вышеизложенных рассуждений шаблон в этой задаче тринадцатиточечный т.е. на каждом шаге в разностном уравнении участвуют 13 точек (узлов сетки) Рассмотрим вид матрицы А - для данной задачи.
|
j+2 |
j+1 |
j |
j-1 |
Матрица метода получается следующим образом : все узлы сетки перенумеровываются и размещаются в матрице Так что все узлы попадают на одну строку и поэтому матрица метода для нашей задачи будет тринадцатидиагональной .
j-2 |
i-1 |
i |
i+1 |
i+2 |
i-2 |
Шаблон задачи |
ОПИСАНИЕ ПРОГРАММЫ.
Константы используемые в программе :
aq = 1 - правая граница области G
b = 1 - левая граница области G
N = 8 - колличество точек разбиения отрезка [0,a]
M = 8 - колличество точек разбиения отрезка [0,b]
h1 = aq/N - шаг сетки по X
h2 = b/M - шаг сетки по Y
Переменные :
u0 - значения сеточной функции U на k-ом шаге
u1 - значения сеточной функции U на (k+1)-ом шаге
a - массив коэффициентов шаблона
Описание процедур :
procedure Prt(u:masa) - печать результата
function ff(x1,x2: real):real - возвращает значение функции f в узле (x1,x2)
procedure Koef - задаёт значения коэффициентов
Действие :
Берётся начальое приближение u0 и с учётом краевых условий ведётся вычисление с i=2 . N , j=2 . M. На каждом итерационном шаге получаем u1 по u0. По достижении заданной точности eps>0 вычисления прекращаются. И все элементы матрицы A, которые лежат ниже главной диагонали получают итерационный шаг (k+1) , а те элементы которые лежат выше главной диагонали (исключая главную диагональ) получают итерационный шаг k.
Примечание : программа реализована на языке Borland Pascal 7.0
Министерство общего и профессионального образования РФ
Воронежский государственный университет
факультет ПММ
кафедра Дифференциальных уравнении
Курсовой проект
“Решение бигармонического уравнения методом Зейделя”
Исполнитель : студент 4 курса 5 группы
Никулин Л.А.
Руководитель : старший преподаватель
Рыжков А.В.
Воронеж 1997г.
Реферат опубликован: 12/08/2006