Однозеркальная антенна

Страница: 3/8

Легко найти связь между отношением и углом .

Из рис.1 следует, что

;

откуда

.

У длиннофокусного параболоида , у короткофокусного . При (фокус лежит в плоскости раскрыва зеркала) .

Апертурный метод расчет поля излучения.

В апертурном поле излучения зеркальной антенны находится по известному полю в ее раскрыве. В этом методе, в качестве излучающей рассматривается плоская поверхность раскрыва параболоида с синфазным полем и известным законом распределения его амплитуды.

Амплитудный метод в том виде, в котором он используется на практике, является менее точным, чем метод расчета через плотность тока. Это объясняется тем, что в этом случае поле в раскрыве зеркала находится по законам геометрической оптики. Следовательно, не учитывается векторный характер поля и, как результат этого, не учитывается составляющие с паразитной поляризацией. Однако в пределах главного лепестка и первых боковых лепестков, т.е. в наиболее важной для нас области диаграммы направленности, оба метода практически дают одинаковые результаты. Поэтому на практике наибольшее распространение получил апертурный метод расчета как более простой.

Задача нахождения поля излучения зеркальной антенны при апертурном методе расчета, как и в общей теории антенн разбивается на две:

1. Вначале находится поле в раскрыве антенны (внутренняя задача).

2. По известному полю в раскрыве определяется поле излучения (внешняя задача).

А). Определение поля в раскрыве параболоидного зеркала.

Поле в раскрыве определяется методом геометрической оптики. Всегда выполняется условие , следовательно, зеркало в дальней зоне и падающую от облучателя волну на участке от фокуса до поверхности зеркала можно считать сферической.

В сферической волне амплитуда поля изменяется обратно пропорционально . После отражения от поверхности зеркала волна становится плоской и амплитуда ее до раскрыва зеркала с расстоянием не изменяется. Таким образом, если нам известна нормированная диаграмма направленности облучателя , поле в раскрыве зеркала легко находится.

Для удобства расчетов введем нормированную координату точки в раскрыве зеркала

;

Подставим значение и

в выражение для , после элементарных преобразований получаем

Реферат опубликован: 9/02/2009