Страница: 2/5
Размерные цепи, в которых по условиям производства экономически целесообразно назначать более широкие допуски на составляющие звенья размерных цепей, допуская при этом у некоторой небольшой части изделий выход размеров замыкающего звена за пределы поля допуска, должны расчитываться теоретико-вероятностным методом. Количество таких бракованных изделий определяется коэффициентом риска tD.
2.3.4. Допуск замыкающего звена.
Допуск замыкающего звена dD вычисляют по формулам
m-1
· метод максимума-минимума dD= S|xi|×di (2.3)
i=1
_
/ m-1
· теоретико-вероятностным метод dD tD× Sxi2×li2×di2 (2.4)
i=1
где di – допуски составляющих звеньев ;
tD – коэффициент риска, который выбирается из таблиц функции Лапласа в зависимости от принятого процента риска p ;
li – коэффициент относительного рассеяния, учитывающий закон распределения размера:
для нормального распределения (Гаусса) li2 =1/9 ,
для закона треугольника (Симпсона) li2 =1/6 ,
для закона равной вероятности или при отсутствии информации о законе распределения li2 =1/3 .
2.3.5. Предельные отклонения составляющих звеньев.
Предельные отклонения составляющих звеньев Dвi и Dнi вычисляют по формулам:
Dвi = Doi + di/2 , Dвi = Doi - di/2 (2.5)
где Doi – координата середины поля допуска i-го звена,
di – допуск i-го звена.
2.4. Прямая и обратная задачи размерных цепей.
Прямая задача – синтез точности размерной цепи – не имеет однозначного решения, т.к. заданный допуск замыкающего звена и координата его середины могут быть получены при различных сочетаниях характеристик составляющих звеньев. В формулах (2.1) – (2.4) мы имеем в каждом уравнении неизвестных столько, сколько составляющих звеньев в рассматриваемой размерной цепи. Поэтому эффективномть решения прямой задачи во многом определяется подготовкой конструктора и его опытом. Он должен назначить координаты полей допусков из конструктивных соображений так, чтобы выполнялось уравнение (2.3).
Обратная задача – анализ точности размерной цепи – решается исходя из установленных величин составляющих звеньев. При решении обратной задачи определяются величина номинального размера, величина и координата середины поля допуска и предельные отклонения замыкающего звена. Таким образом в формулах (2.1) – (2.4) в каждом уравнении будет по одному неизвестному. Поэтому обратная задача решается однозначно и является проверочной.
3. Решение прямой задачи размерной цепи.
3.1. Определение уменьшающих и увеличивающих звеньев цепи.
A3, A2, A1 - увеличивающие звенья, x1 = x2 = x3 = +1 ;
A4, A5 - уменьшающие звенья, x4 = x5 = –1.
3.2. Определение номинальных размеров составляющих звеньев и замыкающего звена.
5
AD = Sxi ×Ai = A1+A2+A3×cosa -A4 -A5 = 210+21+100×cos51-126-190 = -32,008 мм
i=1
Знак “-” означает, что поршень не выходит за пределы корпуса.
3.3. Определение допуска и середины поля допуска замыкающего звена.
dD = 0,75 мм Þ D0D = (0,75+0)/2 = +0,375 мм
3.4. Сводная таблица составляющих звеньев.
Табл. 2. Сводная таблица составляющих звеньев.
По ном. размеру |
По сложности |
Допуск |
A1 |
A3 |
d3 |
A5 |
A4 |
d4 |
A4 |
A5 |
d5 |
A3 |
A1, A2 |
d1 =d2 |
A2 |
Реферат опубликован: 10/08/2009