Взвешанная плавка никелевого концентрата в печи взвешанной плавки

Страница: 3/9

Нагрев пылевых частиц и теплопередача

В начальной стадии загрузки шихты в реакционную шахту, шихта подогревается за счет тепла, получаемого ею при конвективном теплообмене с подогретым до 200 С технологическим воздухом. Воспринимаемый частицей тепловой поток описывается уравнением .

Q=a x S x t(T1-T2)

a - коэф-т передачи тепла конвекцией, ккал/м2/час

S – воспринимающая тепловой поток поверхность, м2

t - время, час

Тепла этого явно недостаточно для воспламенения сульфид­ного материала, т.к. даже сера в зависимости от содержания кислорода в газовой фазе воспламеняется в интервале температур от 260 до 360 °C. Сульфидные же частицы в зависимости от размера зерен воспламеняются при температурах от 280 до 740 С.

Опускаясь ниже, распыленная шихта попадает в зону высо­ких температур, где она за счет излучения от факела или футеровки реакционной шахты нагревается до температур воспламенения сульфидов.

Количество передаваемого тепла за счет радиационного нагрева описывается уравнением Стефана-Больцмана:

Q= S x K x t x (T1/100)4-(T2/100)4

Тепло, полученное поверхностью частицы, передается к ее центру, Передаче тепла в глубь частицы, даже если она и очень мала, осуществляется за счет теплопроводности и для случая шаровидной частицы подчиняется уравнению:

qx = Q/(4Пх2 х t)= l(Тп-Тх)/r2(1/x-1/r)

Из уравнения следует, что удельный тепловой поток к центру частицы обратно пропорционален квадрату радиуса ее. Это означает, что при малых размерах частиц, которые имеют зерна флотационных концентратов, нагрев материала будет проходить в доли секунды.

Реакции окисления сульфидов протекают со значительным выделением тепла. Так как для окисления сульфида необходим подвод кислорода в зону реакции, тo становится понятным, что эти процессы могут протекать только на поверхности зерен. Из этого следует, что на некотором отрезке времени, начиная с мо­мента воспламенения, от поверхности сульфидной частицы возникает дополнительный тепловой поток в глубь сульфидного зерна.

При воспламенении сульфидной частицы температура ее поверхности скачкообразно возрастает достигая в малые доли се­кунды 1500-1700°С. Процесс окисления сульфидов приобретает наивысшую скорость, так как в этот момент поверхность зерен максимальна, содержание кислорода в газах еще высокое и окисная пленка на поверхности сульфидного зерна только что зарож­дается. Средняя температура факела в этой зоне резко повышается до 1400°С и более за счет тепла, выделяющегося при интенсивном окислении всей массы сульфидных зерен. В зоне максимальных температур выделяется основная часть тепла экзотермических реакций плавки, т.к. именно здесь протекают с максимальными скоростями большинство реакций.

В последней зоне, называемой зоной усреднения температур, скорости всех окислительных процессов быстро падают, так как, во-первых, падает содержание кислорода в газовом потоке и, во-вторых, на поверхности окисляющихся сульфидных зерен нарастает пленка продуктов реакции, тормозящая диффузию кислорода в глубь зерна. Если на поверхности частицы образуется плотная корка твердого окисла, лишенная трещин и прочих дефектов, то диффузия кислорода через нее будет чрезвычайно затруднена и процесс окисления может прекратиться, не дойдя до конца. Рых­лые, трещиноватые пленки тормозят процесс в меньшей степени, так же, как и жидкие окисные пленки, скорость диффузии через которые примерно на три порядке выше, чем через твердую пленку. В целом процесс окисления в реакционной шахте печи лимитирует­ся диффузией кислорода через пленки продуктов реакции и обрат­ной диффузией -сернистого ангидрида в ядро газового потока.

В устье реакционной шахты окислительные реакции полностью заканчиваются. Об этом свидетельствуют результаты анализа газа на содержание свободного кислорода: парциальное давление кисло­рода на выходе из реакционной шахты снижается до 10 мм рт.ст.

Диссоциация сульфидов при плавке во взвешенном состоянии

В составе концентратов присутствуют высшие сульфиды, ко­торые диссоциируют при нагревании на низшие сульфиды и серу. Ниже приведены реакции диссоциации.

FeS2®FeS+S

Fe11S12®11FeS+S

Fe7S8®7FeS+S

3NiFeS2®3FeS+Ni3S2+1/2S2

2CuFeS2®Cu2S+2FeS+S

2CuS®Cu2S+S

3NiS®Ni3S2+S

2CuFe2S3®Cu2S+4FeS+S

Реферат опубликован: 2/03/2010