Контрольная по статистике

Страница: 3/10

Средняя арифметическая : = å xf / å f

получаем : = 481,5 : 30 = 16,05 млн.руб.

Среднее квадратическое отклонение :

получаем :

Определяем среднее квадратическое отклонение для определения коэффициента вариации)

Коэффициент вариации : uх = (dх * 100%) / x

получаем : uх =1,7 * 100% : 16,05 = 10,5%

так как uх = 10,5% < 33% то можно сделать вывод, что совокупность однородная, а средняя величина типичная ее характеристика.

Определяем ошибку выборки (выборка механическая) для средней суммы прибыли на одно предприятие по следующей формуле :

если Р=0,954 то t=2

ошибка выборки для средней суммы прибыли на одно предприятие Dх = 0,6

Средняя сумма прибыли будет находиться в границах которые мы находим по формуле :

получаем : 15,45£ X £16,65

С вероятностью 0,954 можно утверждать, что средняя сумма прибыли одного предприятия заключается в пределах :

Доля предприятий со средней прибылью свыше 16,6 млн.руб. находится в пределах :

Выборочная доля составит :

Ошибку выборки определяем по формуле :

,где N – объем генеральной совокупности.

Также объем генеральной совокупности можно определить из условия задачи, так как выборка 10% -тная и в выборку вошло 30 предприятий:

30 предприятий – 10%

Х – 100%

10х=3000

х=300 предприятий, следовательно N=300

подставляем данные в формулу :

Следовательно с вероятностью 0,954 можно утверждать, что доля предприятий со средней прибылью > 16,6 млн. руб будет находиться в следующих пределах:

33% ± 16,3% или 16,7 £ w £ 49,3%

Задача № 2

по данным задачи №1

Методом аналитической группировки установите наличие и характер корреляционной связи между стоимостью произведенной продукции и суммой прибыли на одно предприятие. (результаты оформите рабочей и аналитической таблицами.)

Измерьте тесноту корреляционной связи между стоимостью произведенной продукции и суммой прибыли эмпирическим корреляционным отношением.

Сделайте выводы.

Решение:

Поскольку прибыль предприятия напрямую зависит от объема производимой продукции, то мы обозначим выпуск продукции независимой переменной Х, тогда прибыль зависимой переменной У. Поскольку в каждом отдельном случае рассматривается одно предприятие а на прибыль предприятия, кроме выпуска продукции, может влиять множество факторов в том числе и неучтенных, следовательно можно определенно сказать что связь в данном случае корреляционная. Ее можно выявить при помощи аналитической группировки. Для этого сгруппируем предприятия по выпуску продукции, интервал высчитываем по формуле :

Где К – число выделенных интервалов.

Получаем :

В итоге у нас получаются следующие интервалы :

41 – 53; 53 – 65; 65 – 77; 77 – 89; 89 – 101

Строим рабочую таблицу.

№ группы

Группировка предприятий по объему продукции, млн.руб.

№ предприятия

Выпуск продукции

млн.руб

Х

Прибыль млн.руб.

У

У2

I

41-53

3

41

12,1

146,41

7

45

12,8

163,84

12

48

13

169

16

52

14,6

213,16

S

4

186

52,5

692,41

В среднем на 1 предприятие

46,5

13,1

II

53-65

1

65

15.7

264.49

4

54

13.8

190,44

8

57

14.2

201,64

13

59

16.5

272,25

17

62

14.8

219,04

22

64

15

225

S

6

361

90

1372,86

В среднем на 1 предприятие

60,1

15

III

65-77

5

66

15,5

240,25

9

67

15,9

252,81

14

68

16,2

262,44

18

69

16,1

259,21

20

70

15,8

249,64

21

71

16,4

268,96

23

72

16,5

272,25

25

73

16,4

268,96

26

74

16

256

28

75

16,3

265,69

30

76

17,2

295,84

S

11

781

178,3

2892,05

В среднем на 1 предприятие

71

16,2

IV

77-89

2

78

18

324

6

80

17,9

320,41

10

81

17,6

309,76

15

83

16,7

278,89

19

85

16,7

278,89

24

88

18,5

342,25

S

6

495

105,4

1854,2

В среднем на 1 предприятие

82,5

17,6

V

89-101

11

92

18,2

331,24

27

96

19,1

364,81

29

101

19,6

384,16

S

3

289

56,9

1080,21

В среднем на 1 предприятие

96,3

18,9

S

ИТОГО

2112

483,1

В среднем

71,28

16,16

Реферат опубликован: 18/04/2008