Страница: 3/8
Правило выбора решения в соответствии с этим критерием можно интерпретировать следующим образом:
Матрица решений дополняется еще одним столбцом из наименьших результатов eir каждой строки. Выбрать надлежит те варианты Eio, в строках которых стоят наибольшие значения eir этого столбца.
Выбранные таким образом варианты полностью исключают риск. Это означает, что принимающий решение не может столкнуться с худшим результатом, чем тот, на который он ориентируется. Какие бы условия Fj ни встретились, соответствующий результат не может оказаться ниже Zмм. Это свойство заставляет считать минимаксный критерий одним из фундаментальных. Поэтому в технических задачах он применяется чаще всего, как сознательно, так и неосознанно. Однако положение об отсутствии риска стоит различных потерь.
1.2. Критерий Сэвиджа.
С помощью обозначения
аij=max eij – eij – это eir=maxaij = max(max eij-eij),
формируется оценочная функция
Zs=min eir = min [max (maxeij – eij)]
Соответствующее правило выбора теперь интерпретируется так:
Каждый элемент матрицы решений вычитается из наибольшего результата соответствующего столбца. Эти разности образуют матрицу остатков. Эта матрица пополняется столбцом наибольших разностей eir. Выбираются те решения Еio, в строках которых стоит наименьшее значение для этого столбца
и строится множество оптимальных вариантов решения
Для понимания этого критерия определяемую соотношением величину aij = max eij - eij можно трактовать как максимальный дополнительный выигрыш, который достигается, если в состоянии Fj вместо варианта Ei выбрать другой, оптимальный для этого внешнего состояния вариант. Мы можем, однако, интерпретировать aij и как потери (штрафы), возникающие в состоянии Fi при замене оптимального для него варианта на вариант Ei. Тогда определяемая соотношением величина eir представляет собой — при интерпретации аij в качестве потерь—максимальные возможные (по всем внешним состояниям Fj, j==1, ., n) потери в случае выбора варианта Ei. Эти максимально возможные потери минимизируются за счет выбора подходящего варианта Ei.
Соответствующее S-критерию правило выбора теперь интерпретируется так:
каждый элемент матрицы решений ||eij|| вычитается из наибольшего результата max eij соответствующего столбца.
Разности aij образуют матрицу остатков ||aij|| Эта матрица пополняется столбцом наибольших разностей eir. Выбираются те варианты Eio, в строках которых стоит наименьшее для этого столбца значение.
По выражению оценивается значение результатов тех состояний, которые, вследствие выбора соответствующего распределения вероятностей, оказывают одинаковое влияние на решение, с точки зрения результатов матрицы ||eij|| S-критерий связан с риском, однако, с позиций матрицы ||aij|| он от риска свободен.
1.3. Критерий Байеса-Лапласа.
Этот критерий учитывает каждое из возможных следствий. Пусть qj – вероятность появления внешнего состояния Fj, тогда для этого критерия оценочная функция запишется так:
ZBL=max eir, eir= åeijqj.
Тогда правило выбора будет записано так:
Матрица решений дополняется еще одним столбцом, содержащим математическое ожидание значений каждой из строк. Выбираются те варианты Eio, в строках которых стоит наибольшее значение eir этого столбца.
1.4. Расширенный минимаксный критерий.
В нем используются простейшие понятия теории вероятностей, а также, в известном смысле, теории игр. В технических приложениях этот критерий до сегоднешнего времени применяется мало.
Основным здесь является предположение о том, что каждому из n возможных внешних состояний Fj приписана вероятность его появления : 0< q<1.
Тогда расширенный ММ-критерий формулируется следующим образом:
где р—вероятностный вектор для Ei , a q—вероятностный вектор для Fj.
Таким образом, расширенный ММ-критерий задается целью найти наивыгоднейшее распределение Ei вероятностей на множестве вариантов, когда в многократно воспроизводящейся ситуации ничего не известно о вероятностях состояний Fj. Поэтому предполагается, что Fj распределены наименее выгодным образом.
1.5.Критерий произведений.
С самого начала этот критерий ориентирован на величины выигрышей, то есть на положительные значения величины е
Определим оценочную функцию:
Zp=max eir.
Привило выбора в этом случае формулируется так:
Матрица решений дополняется новым столбцом, содержащим произведения всех результатов каждой строки. Выбираются те варианты Еiо, в строках которых находятся наибольшие значения этого столбца.
Применение этого критерия обусловлено следующими обстоятельствами:
Реферат опубликован: 12/02/2009