Критерии принытия решений

Страница: 5/8

где i0 и j0—оптимизирующие индексы для рассматриваемых вариантов решений и, соответственно, состояний.

Посредством некоторого заданного или выбираемого уровня допустимого риска Eдоп>0 определим некоторое множество со­гласия, являющееся подмножеством множества индексов {1, . ., т}:

Величина Ei:=ei0j0 - minjeij для всех i I1 характеризует наибольшие возможные потери в сравнении со значением ei0j0, задаваемым ММ-критерием. С другой стороны, в результате такого снижения открываются и возможности для увеличения выигрыша по сравнению с тем, который обеспечивается ММ-критерием. Поэтому мы рассматриваем также (опять-таки как подмножество множества {1, ., m}) некоторое выигрышное множество

Тогда в множество-пересечение I1 I2 мы соберем только такие варианты решений, для которых, с одной стороны, в определенных состояниях могут иметь место потери по сравнению с состоянием, задаваемым ММ-критерием, но зато в других состоя­ниях имеется по меньшей мере такой же прирост выигрыша. Теперь оптимальными в смысле BL (ММ)-критерия будут решения

Правило выбора для этого критерия формулируется следующим образом.

Матрица решений ||еij|| дополняется еще тремя столбцами. В первом из них записываются математические ожидания каждой из строк, во втором—разности между опорным значением ei0j0 = ZMM и наименьшим значением minj(еij) соответствующей строки. В третьем столбце помещаются разности между наибольшим значением maxj еij каждой строки и наибольшим значением max ei0j той строки, в которой находится значение ei0j0. Выбираются те варианты Ei0 строки которых (при соблюдении приводимых ниже соотношений между элементами второго и третьего столбцов) дают наибольшее математическое ожидание. А именно, соответствующее значение ei0j0 – minj еij из второго столбца должно быть меньше или равно некоторому заранее заданному уров­ню риска εдоп. Значение же из третьего столбца должно быть больше значения из второго столбца.

Применение этого критерия обусловлено следующими признаками ситуации, в которой принимается решение:

вероятности появления состояний FJ неизвестны, однако имеется некоторая априорная информация в пользу какого-либо определенного распределения;

необходимо считаться с появлениями различных состояний как по отдельности, так и в комплексе;

допускается ограниченный риск;

принятое решение реализуется один раз или многократно.

Таким образом, спектр применимости теории распро­страняется далеко за пределы предыдущих критериев. Особо следует подчеркнуть, что действие новых критериев остается вполне обозримым, хотя функция распределения может играть лишь подчиненную роль.

BL (ММ)-критерий хорошо приспособлен для построения практических решений прежде всего в области техники и мо­жет считаться достаточно надежным. Однако задание границы риска εдоп и, соответственно, оценок риска εi не учитывает ни число применений решения, ни иную подобную информацию. Влияние субъективного фактора хотя и ослаблено, но не исключено полностью;

Условие maxj еij – maxjеi0 j >= εi существенно в тех случаях, когда решение реализуется только один или малое число раз. В этих случаях недостаточно ориентироваться на риск, связан­ный лишь с невыгодными внешними состояниями и средними значениями. Из-за этого, правда, можно понести некоторые по­тери в удачных внешних состояниях. При большом числе реа­лизации это условие перестает быть таким уж важным. Оно даже допускает разумные альтернативы.

2.Постановка задачи

Необходимо проанализировать и выбрать наилучший и наихудший объект по признакам, использую критерий Севиджа, критерий произведений и составной критерий Байеса-Лапласа минимаксный. Каждый из объектов характеризуется некоторыми статистическими данными, которые приведены в таблице 1.

Таблица 1.

№ n/n

Наименование

района

Обеспеченность врачами на 10т.

Рождаемость

на 1 тыс.

Смертность

на 1 тыс.

Смертность в трудовом

возрасте

1

Панинский

19.7

7.9

21.0

1040.9

2

Петропавловский

14.7

8.1

19.6

644.8

3

Поворинский

18.9

7.2

18.4

1125.9

4

Подгоренский

18.6

7.4

18.1

846.0

5

Рамонский

21.8

6.4

23.3

1140.8

Реферат опубликован: 12/02/2009