Страница: 2/14
Представим, что в результате наблюдений мы получили числа x1, x2, ., xn. Эти числа рассматриваются как одна из возможных реализаций совокупности n величин в их сочетании.
Статистикой называют некоторый параметр f зависящий от x1, x2, ., xn. Поскольку эти величины являются, как отмечено, одной из их возможных реализаций, то и значение данного параметра также оказывается одним из ряда возможных. Следовательно, каждая статистика в этом смысле имеет свое распределение вероятностей (т.е. для любого заданного числа a существует вероятность того, что параметр f окажется не большим, чем a).
По сравнению с содержанием, вкладываемым в термин “статистика” в смысле, рассмотренном выше, здесь, во-первых, имеется в виду его сужение всякий раз до одной величины – параметра, что не исключает совместного рассмотрения нескольких параметров (нескольких статистик) в одной комплексной задаче. Во-вторых, здесь подчеркивается наличие математического правила (алгоритма) получения величины параметра из совокупности результатов наблюдения: вычислить их среднюю арифметическую, взять максимальное из доставленных значений, рассчитать отношение численности некоторой их особой группы к общему числу и т.д.
Наконец, в указанном смысле термин “статистика” применяется к параметру, полученному из результатов наблюдений в любой области явлений – общественных и других. Это может быть средняя урожайность, или средняя длина охвата сосен в лесу, или средний результат повторных измерений параллакса некоторой звезды и т.д. и в этом смысле термин “статистика” применяется главным образом в математической статистике, которая, как и любой раздел математики, не может быть ограничена той или иной областью явлений.
Под статистикой понимают также процесс ее “ведения”, т.е. процесс собирания и обработки сведений о фактах, необходимых для получения статистики в обоих рассмотренных смыслах.
При этом необходимые для статистики сведения могут собираться с единственной целью получения обобщенных характеристик для массы случаев данного рода, т.е. именно естественно в целях статистики. Таковы, например, сведения, собираемые при проведении переписей населения.
Закон больших чисел. Статистическая закономерность.
Главным обобщением опыта исследования любых массовых явлений служит закон больших чисел. Отдельное единичное явление, рассматриваемое как одно из явлений данного рода, содержит в себе элемент случайного: оно могло быть или не быть, быть таким или иным. При соединении же большого числа таких явлений в общих характеристиках всей их массе случайность исчезает в тем большей мере, чем больше соединено единичных явлений.
Математика, в частности теория вероятностей, рассматриваемая в чисто количественном аспекте, закон больших чисел выражает целой цепью математических теорем. Они показывают, при каких условиях и в какой именно мере можно рассчитывать на отсутствие случайности в охватывающих массу характеристиках, как это связано с численностью входящих в них индивидуальных явлений. Статистика же основывается на этих теоремах в изучении каждого конкретного массового явления.
Закономерность, проявившаяся лишь в большой массе явлений через преодоление свойственной ее единичным элементам случайности, называется статистической закономерностью.
В одних случаях перед статистикой стоит задача измерения ее проявлений, само же ее существование теоретически ясно заранее.
В других случаях закономерность может быть найдена статистикой эмпирически. Этим путем было, например, установлено, что с увеличением дохода семьи в ее бюджете падает процент расходов на питание.
Таким образом, всякий раз, когда статистика в исследовании какого-либо явления достигает обобщений и находит действующую в нем закономерность, эта последняя сразу становится достоянием той конкретной науки, к кругу интересов которой принадлежит это явление. Следовательно, в отношении каждой науки статистика выступает в качестве метода.
Рассматривая результаты массового наблюдения, статистика находит в них черты сходства и различия, соединяет элементы в группы, выявляя при этом различные типы, дифференцируя по этим типам всю подвергнутую наблюдению массу. Результаты наблюдения единичных элементов массы используются далее для получения характеристик всей совокупности и выделения в ней особых частей, т.е. для получения обобщающих показателей.
Реферат опубликован: 29/03/2009