Страница: 5/9
Итак, главные первичные энергетические затраты есть Е1 и Е2. Теперь напишем приближённое уравнение энергетического баланса при падении метеорита. Оно позволит определить порядок величины радиуса кратера: Е»σmR³+rg (R²)².
Два слагаемых уравнения по-разному зависят от радиуса кратера R. Поэтому при малых энергиях для малых кратеров главным оказывается первый член, а для больших -второй. Кратеры первого типа называют ПРОЧНОСТНЫМИ , а второго- ГРАВИТАЦИОННЫМИ. Критическим радиусом разделяющим те и другие, будет R0= 3 x 10² м, а масса метеорита, образующего кратер критического радиуса, по порядку величины есть mo= 3000000 кг.
Падение таких и больших метеоритов- достаточно редкое событие, но поскольку след его остается на земной поверхности на времена геологических масштабов, то общее число обнаруженных на сегодня гравитационных кратеров около ста[3].
Теперь рассмотрим, как разогреваются горные породы при образовании кратеров. Надо иметь в виду, что этот разогрев происходит крайне неравномерно, и мы сможем оценить лишь среднее повышение температуры. Вся начальная
энергия метеорита Е в конечном счете переходит в тепловую энергию. Без учета частичного плавления и испарения горных пород, она равна Е=Ет = сrR³DT. Здесь с приблизительно равно 1000дж/кг/К. есть характерная величина теплоёмкости горных пород, а DT - среднее возрастание температурыгорных пород. Для не слишком больших метеоритов средний нагрев по объему кратера, как можно отметить, не зависит от массы и энергии метеорита. Он равен всего DT=3К. Поскольку средний разогрев так мал, то ясно, что доля расплавленного и тем более испаренного вещества окажется ничтожной при образовании любых малых кратеров.
При падении метеоритов с размерами, большими критического R0, температура разогрева горных пород растет пропорционально радиусу кратера: DT=gR/c. Доля расплавленного материала растет с ростом R. Когда средний разогрев достигает характерной температуры размягчения горных пород Т=300К, это доля станет подавляющей. Явление массового проплавления происходит при образовании кратеров с размерами, превышающими 30 км на земной поверхности.
Соответственно, масса метеорита для образования кратера с массовым выплавлением пород по порядку величины должна превышать 30000 кг. Такие кратеры- следы редчайших событий. Их размытые следы сохраняются в течение почти всей геологической истории Земли, однако на всей планете пока обнаружено только несколько кратеров с радиусом, большим 30 км.
Начиная примерно с этого размера, формула R~E¼ становится неприменимой, поскольку учёт теплоты плавления делает более сложным баланс энергий метеорита. Кратеры с массовым размягчением пород и внешне выглядит иначе. С ростом размера становится всё более заметной новая особенность- застывшие концентрические волны. Уже у кратеров с радиусом более 1 км есть отчётливое поднятие, а отпечатки катастрофических столкновений с радиусами большими 30 км, имеют 3-4 гребня и впадины. Отчётливо видны не размытые эрозией и не скрытые осадочными породами многокольцевые структуры гигантских кратеров на Луне.
На нашей планете кратеров намного меньше, чем на Луне. При дрейфе континентальных плит поверхность Земли довольно быстро обновляется, а подвижные атмосфера и океан размывают очертания кратеров. Лишь с помощью контрастных фотографий из космоса удалось обнаружить около сотни сильно искаженных временем кольцевых структур диаметром до сотни километров. Оказалось, например, что г. Калуга расположена в древнем кратере диаметром 15 км. Несколько менее уверенно можно утверждать космическое происхождение формации диаметром 440 км на восточном берегу Гудзонова залива (её половина видна на географической карте в очертаниях побережья).
Наибольший отчётливый кратер находится в Аризоне, США. Он имеет диаметр 1265 м и глубину 175 м., а образовался всего 25-30 тысяч лет назад при падении тела массой около 10 млн. тонн.
Даже при образовании малых кратеров часть горной породы и самого метеорита разлетаются в виде расплавленной массы веществ. Такие застывшие в
Реферат опубликован: 19/11/2007