Биоритмы человека

Страница: 4/19

24

незадолго до второй мировой войны, но о нем скоро забыли. Лишь в 50-х годах Фрэнк Браун из Северо-западного университета и Колин Питтендрих из Принстона возродили концепции часов и захватывания (синхронизации). Идея использовать ежедневный стимул для подстройки фазы циркадианных часов родилась в диссертации Кеннета Роусона в 1956 году. Эта способность подстраивать фазу по сигналу времени – важнейшее условие полезности любых циркадианных ритмов. Роусон в своих опытах использовал млекопитающих, хотя они оказались не лучшими объектами для исследования подстройки фазы . И вскоре биологи освоили для этого другие организмы, порой экзотические, но каждый из которых давал исследователю новые возможности.

В экспериментах на одноклеточной водоросли Conyaulax было получено одно из первых, хотя до сих пор непризнанных, свидетельств четной подстройки. Одновременно или несколько раньше аналогичные данные были получены на обыкновенной плодовой мушке Drosophila pseudoobscura в лабораториях в Принстоне.

С начала ХХ века плодовые мушки стали самым подробно изучаемым многоклеточным организмом на планете. В настоящее время составлен огромный каталог ее мутантов – незаменимый инструмент в руках исследователя. Такой инструмент совершенно необходим: всякий критический эксперимент нуждается в тщательном контроле, без которого эксперимент вряд ли будет однозначным. До тех пор пока биолог-экспериментатор не поставит вопрос абсолютно точно, Природа будет отвечать уклончиво. Использование генетических маркеров позволяет создать необычайно однородную популяцию исследуемых организмов. Изучая мутантов с различными нарушениями зрения, проводя искусственный отбор линий мух с измененным периодом часов или необычной чувствительностью к температуре, биологи уже продвинулись так далеко, что выделили, клонировали и картировали гены, контролирующие развитие циркадианных часов.

Зачатие плодовой мушки происходит обычным путем. Оплодотворенное яйцо развивается, и из него вылупляется крошечная личинка. Затем в жизненном цикле всякой мухи наступает стадия, когда личинка должна превратиться в половозрелую крылатую особь. На время этого превращения насекомое укрывается в толстой коричневой капсуле – это закованное в панцирь существо называется куколкой. Внутри оболочки каждой куколки почти все личиночные органы растворяются и образуют жидкую массу, из которой заново строится тело взрослой особи. Только мозг остается неизменным, и в нем продолжают тикать циркадианные часы. Наконец, приходит срок, когда самка должна выбраться на волю, опробовать свои крылья и подыскать себе партнера. Самка раздувает на голове маленький пузырек и выталкивает «крышку-люк» – выход из оболочки. Через несколько минут она на свободе. В естественных условиях, а также в лаборатории при чередовании 12 часов света 12 часов темноты это событие – вылупление взрослой особи - происходит в первые светлые часы.

22

подстройка старого ритма. В экспериментах двадцати летней давности на это уникальное «нечто» не было и намека. Лишь теперь тщательно спланировав эксперименты, в которых четко регистрируются смещение фазы, плавно зависящие от внешних условий, доказывают существование чего-то необычного, никогда прежде не виданного. Удивительная вещь: топология дает совет, как обнаружить точку сингулярности путем лабораторного опыта. Эта «схема ловушки сингулярности» позволила осуществить первые эксперименты с целью выявления сингулярности биологических часов.

На сегодня подавляющие большинство математических моделей биологических часов остаются непроверенными или непроверяемыми. К счастью, во многих вопросах без них можно спокойно обойтись: основные биологические свойства живых часов нетрудно получить путем логических рассуждений о подстройке фазы. Более того, эти рассуждения можно подкрепить простыми и наглядным фаз в виде цветных диаграмм. Такие диаграммы позволяют увидеть непосредственно, увидеть поразительные следствия, вытекающие из открытия подстройки четного типа, не прибегая к головоломным топологическим доказательствам.

Начнем с самого простого – с крайних, идеализированных случаев нечетной и четной подстройки. Пусть при нечетной новая фаза равна старой, а при нечетной новая фаза остается неизменной независимо от старой. Для удобства примем именно эту фазу за нулевую. Тогда при нулевой старой фазе любой стимул – и довольно сильный, и пренебрежимо слабый – оставит новую фазу тоже нулевой. Предположим, что она останется нулевой и при всех промежуточных величинах стимула.

Что можно сказать о стимулах некой промежуточной величены, действующие при других значениях старой фазы? По-видимому, разумно предполагать, что малые изменения величены стимула и времени его воздействия приведут к столь же малым изменениям новой фазы. Без этого постулата непрерывности вообще ничего сказать нельзя: поскольку стимул невозможно повторить с абсолютной точностью, ни один полученный результат ничего не дает для предсказанья исхода нового эксперимента.

При постоянности воздействия любого стимула и величены старой фазы в некоторой точке, при определенном сочетание величены стимула и значения старой фазы, получается неопределенность, хотя близлежащие точки вокруг нее представляют все разнообразие цветов радуги. Эта странная точка – точка сингулярности.

Реферат опубликован: 21/09/2007