Страница: 2/8
Однако в буквальном смысле камень преткновения солнечной электроэнергетики - низкий КПД кремниевых элементов. Дело в том, что лишь небольшая часть солнечной энергии поглощается электронами в полупроводниках. Львиная доля падающего излучения идет на нагрев фотоэлемента (что, между прочим, ухудшает его фотоэлектрические характеристики), какая-то часть отражается, какая-то пронизывает его насквозь. Вспомним, ведь запрещенная полоса в полупроводнике довольно узка. А значит, и невелико «энергетическое меню» электронов. Кроме того, значительные потери энергии в полупроводниках связаны с рекомбинацией электронов и дырок (компенсацией разноименных зарядов).
В результате КПД стандартных солнечных элементов не превышает 10%. Впрочем, уже есть опытные образцы, полученные в лабораториях М. Кагана, А. Зайцевой (НПО «Квант»), КПД которых 15-17%. И это не предел. Экспертами посчитано, что предельный КПД для солнечных элементов с n-р-переходом составляет 27-30%.
Особенно перспективными считаются полупроводниковые преобразователи с так называемыми гетера- переходами. Они изготовлены из двух различных по химическому составу полупроводников (в отличие от описанного нами одного, но легированного с двух сторон разными примесями). Соответственно ширина запрещенных зон в каждом различна. В области n-р-перехода воз никает, за счет взаимного сглаживания потенциальных барьеров, дополнительная фото-ЭДС. Коллектив ученых, работающий под руководством академика Ж. Алферова, получил на фотодиодах с гетеропереходом «арсенид алюминия - арсенид галлия» КПД около 20%.
Примечательно, что при нагреве такие фотодиоды не ухудшают свои фотоэлектрические свойства. Они устойчиво работают даже при 1600- кратном уплотнении потока солнечной энергии.
Оказывается, можно создать фотопреобразующие устройства, которые будут утилизировать практически весь падающий на них свет. Они обладают так называемой варизонной структурой, то есть запрещенная зона у них переменной ширины (рис. 1). Этого добиваются, вводя в разные зоны полупроводника различные примеси. В таком случае фото-ЭДС генерируется не на одной поверхности n-р-перехода, а в целой пространственной области, для разных точек которой - разные запрещенные зоны. В ней для любого кванта найдется укромное местечко, где его без помех поглотит электрон.
Теория варило иных структур в нашей стране разрабатывается членом-корреспондентом АН СССР Н. Лидоренко, доктором физико-математических наук В. Ёвдокимовым, доктором технических наук Д. Стребковым, кандидатом физико- математических наук А. Миловановым и др. Доказано, что фотопреоб- разователи с варизонной структурой (коль скоро научатся их изготавливать) будут иметь КПД 90%.
Идет поиск и новых - дешевых материалов для фотоэлементов. Весьма перспективны, по мнению некоторых исследователей, полупроводниковые соединения меди, кадмия, серы. Преобразователи, полученные на их основе, недороги, да вот беда - КПД у них порядка 5%, и материалы нестабильны, разрушаются под воздействием окружающей среды. Сложная, дорогостоящая герметизация сводит на нет полученную экономию.
Можно уменьшить себестоимость гелиоэлектроэнергии другим способом. Скажем, заставить Солнце . ярче освещать фотопреобразователи. Для этого используют устройства, именуемые концентраторами. Они собирают солнечные лучи с большой площади и направляют их на относительно небольшие по размеру собственно фотопреобразующие панели.
Параболический концентратор. Уже само название говорит о том, что его чаша представляет собой параболоид, если направить эту чашу на Солнце, то практически все лучи, отразившиеся от ее внутренней зеркальной поверхности, соберутся в небольшой области возле фокуса параболоида. Коэффициент концентрации (отношение площади, с ко-
торой собирались лучи, к той площади, на которой они сконцентрировались) у такого устройства велик. Это, конечно, хорошо. Но в то же время приводит к чрезмерному перегреву фотоэлемента. Приходится предусматривать систему охлаждения. Да и система автоматического слежения за Солнцем тоже нужна. Чуть-чуть отклонится Солнце от оси симметрии параболоида - сразу же происходит существенная потеря фотоэлектрической мощности. Принцип работы фоконов и фоклинов такой же, что и параболических концентраторов. Только огибающие их чаш не параболы, а гиперболы вращения. Эта замена имеет определенный смысл. Гиперболоид собирает лучи в фокальной области даже в том случае, если их наклон к оси симметрии чаши составляет 6° ! Не нужно непрерывно поворачивать концентратор вслед за Солнцем. Вполне достаточно изредка (можно и вручную) изменить угол его наклона. 6° да 6° - это 12°, а такой путь по небу Солнце совершает примерно за час.
Реферат опубликован: 6/01/2009