Азот

Страница: 6/8

Эффекты разрыхления можно объяснить следующим образом. Возникновение адсорбционных связей с поверхностью в ходе формирования полимерного материала, спо­собствуя дополнительному структурированию системы, заметно ограничивает подвижность полимерных цепей вблизи поверхности, что приводит к изменению условий протекания релаксационных процессов и замедлению установления равновесного состояния полимера вблизи поверхности, а следовательно делает невозможным появление плотноупакованной структуры в таких условиях. Влияние условий протекания релаксационных процессов на плотность упаковки полимеров показано в работе [21].

Одновременно, что на поверхности происходит частично и сам процесс формирования надмолекулярных структур.

Можно допустить, что по тем же причинам агрегаты молекул или дру­гие надмолекулярные структуры будут менее плотноупакованными. Чем больше поверхность наполнителя, тем больше ограничивается подвижность цепей уже в ходе формирования поверхностного слоя, и тем рыхлее упаковка в нем макромолекул. Посте заверше­ния процесса формировании материала, когда агрегаты и молекулы более рыхлоупакованные, связаны с поверхностью, основное влияние на свойства имеет уже ограничение подвижности молекул. входящих в поверхностный слой.

Температуры стеклования граничных слоев

Как известно, переход из высокоэластического в стеклообраз­ное состояние является кооперативным процессом, и поэтому вели­чина скачка теплоемкости при стекловании зависит, очевидно, от числа молекул или сегментов, принимающих участие в переходе. Так как стеклование связано с проявлением подвижности макро­молекул, то понижение скачка теплоемкости при стекловании может быть однозначно связано с исключением некоторой части макромо­лекул из участия в процессе. Экспериментальные данные подтверждают это положение: во всех случаях с ростом содержания твердой фазы скачок теплоемкости уменьшается. Это дает возможность по­дойти к оценке доли полимера, находящегося в граничных слоях. Если предположить, что макромолекулы, находящиеся в гранич­ных слоях вблизи поверхности, не участвуют в общем процессе, то доля «исключенных» макромолекул составляет

n = (1-f) = 1 - DC/DCa,

где DCa, DC - значение скачка теплоемкости для ненаполненного и наполненного образцов соответственно. Отсюда можно опреде­лить толщину граничного слоя следующим образом. Если упрощен­но представить частицы наполнителя в виде сфер радиуса r, a толщину адсорбционного слоя обозначить через Dr, то объем адсорб­ционного слоя вокруг частички наполнителя будет описываться уравнением:

V = 4p[(2+Dr)3 - r3]/3

С другой стороны, объемную дано граничных макромолекул можно представить как (1-f)c, где f - доля несвязанных макромолекул; с - общая объемная доля полимера в системе. Прирав­нивая отношение объема адсорбированного слоя вокруг частицы к ее объему и отношение общей объемной доли граничных макромо­лекул к объемной доле наполнителя в системе, можно написать:

Если взять экспериментальное значение для системы олигоэтиленгликольадипинат - азросил (1-f) @ 1 и с = 0,975, то Dr/r @ 0,8. Так как частицы аэросила имеют диаметр около 250 А, то дм данной системы толщина слоя равна 100 А. Аналогичные ве­личины порядка 170 А получены для наполненных сажей ли­нейных полиуретанов.

Итак, абсолютное значение теплоемкости полимерной фазы в наполненных системах ниже, чем в ненаполненных, что интер­претируется как следствие понижения химического потенциала макромолекул в граничных областях по сравнению с химическим потенциалом в объеме. Таким образом, термодинамические данные указывают на определенные структурные изменения в граничных слоях полимеров на твердой поверхности.

Как уже было сказано - толщина граничного стоя зависят от свойств твердой поверхности и характеристик полимерной фа­зы. Влияние химической природы полимера на изменение свойств граничных слоев очень существенно. Рассмотрим некоторые лите­ратурные данные, полученные при измерении теплоемкости (табл. 2). Как видно из табл. 2 при увеличении в полимерах содержания аэросила во всех случаях происходит более или ме­нее резкое понижение величины скачка теплоемкости DСр при температуре стеклования. Это указывает на переход некоторой части макромолекул из объема в граничные слои вблизи твердой поверхности. В табл. 2 приведены значения доли n полимера в граничном слое, найденной из зависимости, учитывающей вели­чину скачка теплоемкости при стекловании для наполненного и ненаполненного образцов. Значение n увеличивается с повышени­ем содержания наполнителя в системе (хотя пропорциональности при этом не наблюдается), и величина n стремится к некоторому пределу.

Реферат опубликован: 13/02/2007