Страница: 1/3
Вначале рассмотрим затухающие колебания.
Во всякой реальной колебательной системе всегда имеется сила трения (для механической системы), или электрическое сопротивление (для колебательного контура), действие которых приводит к уменьшению энергии системы. Если убыль этой энергии не восполняется, то колебания будут затухать.
Рассмотрим механические колебания. В большинстве случаев сила трения пропорциональна скорости.
. (1.1)
Где r — постоянная, которая называется коэффициентом трения. Знак минус обусловлен тем, что сила F и скорость v направлены в противоположные стороны.
Уравнение второго закона Ньютона при наличии силы трения имеет вид
. (1.2)
Применим следующие обозначения
, (1.3)
Тогда
(1.4)
Где ω0 — собственная частота колебательной системы.
Будем искать решение уравнения в виде
(1.5)
Найдём первую и вторую производные
Подставим выражения в уравнение (1.5)
Сократим на
(1.6)
Решение уравнения (1.6) зависит от знака коэффициента, стоящего при и. Рассмотрим случай, когда этот коэффициент положителен (т. е. b<ω0 — трение мало). Введя обозначение , придем к уравнению
Решением этого уравнения будет функция
Подставляя это выражение в уравнение (1.5), имеем
(1.7)
Здесь A0 и α — постоянные, значения которых зависят от начальных условий, ω — величина, определяемая формулой
.
Скорость затухания колебаний определяется величиной , которую называют коэффициентом затухания.
Для характеристики колебательной системы употребляется также величина
называемая добротностью колебательной системы. Она пропорциональна числу колебаний Ne , совершаемых системой за то время t, за которое амплитуда колебаний уменьшается в e раз.
Вынужденные колебания.
Допустим, что механическая колебательная система подвергается действию внешней силы, изменяющейся со временем по гармоническому закону:
(2.1)
В этом случае уравнение второго закона Ньютона имеет вид
Введя обозначения (1.3), преобразуем уравнение приобретёт вид:
(2.2)
Здесь b — коэффициент затухания, ω0 — собственная частота колебательной системы, ω — частота вынуждающей силы.
Дифференциальное уравнение (2.2) описывает вынужденные колебания. Решение этого уравнения равно сумме общего решения соответствующего однородного уравнения и частного решения неоднородного уравнения. Общее решение однородного уравнения уже найдено (1.7), оно имеет вид
(2.3)
Где .
Попробуем найти частное решение (2.2) в виде (2.4)
где — неизвестный пока сдвиг фаз между силой и вызываемыми ею колебаниями.
Реферат опубликован: 7/02/2009