Вынужденные колебания

Страница: 2/3

(2.5)

(2.6)

Развернем и по формулам для синуса и косинуса разности и подставим в формулу (2.2) :

Сгруппируем члены уравнения:

(2.7)

Уравнение (2.7) будет тождественно при любых значениях t тогда, когда коэффициенты при cosωt и sinωt в обеих частях уравнения будут оди­наковыми.

(2.8)

(2.9)

Найдём значения A и при которых функция (2.4) удовлетворяет уравне­нию (2.2). Для этого возведём равенства (2.8) и (2.9) в квадрат и сложим их друг с другом

(2.10)

Из (2.9) следует, что

(2.11)

Подставим значения A и в (2.4) и получим частное решение неоднородного уравнения (2.2):

(2.12)

Общее решение имеет вид

Первое слагаемое играет за­метную роль только в начальной стадии процесса, при установлении колебаний. С течением времени из-за экспоненциального множителя роль слагаемого уменьшается, и по прошест­вии достаточного времени им можно пренебречь, со­хранив в решении только второе.

Зависимость амплитуды вынужденных колебаний от частоты вынуждающей силы (2.10) приводит к тому, что при некоторой частоте амплитуда достигает максимального значения. Колебательная система оказы­вается особенно отзывчивой на действие вынуждаю­щей силы при данной частоте. Это явление называет­ся резонансом, а соответствующая частота — резонансной частотой.

Для того чтобы определить резонансную частоту ωрез, нуж­но найти максимум функции (2.10), т.е. продифференцировать это выражение по ω и приравняв производную нулю:

Решения этого уравнения ω=0 и , но два из них исключаются, т.к. решение, равное нулю, соответст­вует максимуму знаменателя, а не имеет физического смысла (частота не может быть отрицательной).

(2.13). Следовательно (2.14)

Зависимость амплиту­ды вынужденных колеба­ний от частоты ко­лебаний показана графически на рисунке слева. Кривые на графике соответствуют различным значениям параметра b. Чем меньше b, тем выше и правее лежит максимум резонансной кривой. При очень большом затухании (таком, что b2 > ω0) выражение для ре­зонансной частоты становится мнимым. Это означает, что резонанс в этом случае не наблюдается — с увеличением частоты амплитуда монотонно убывает.

Изображенная на рисунке совокупность графиков функции (2.10) называется резонансными кривыми.

Согласно формуле (2.14) при малом затухании (т. е. при b<<ω0) амплитуда при резонансе

Если разделить это выражение на смещение x0 из положе­ния равновесия под действием постоянной силы F0, равное . В результате получим, что

где - логарифмический декремент затухания.

Следовательно, добротность Q показывает, во сколько раз амплитуда при резо­нансе превышает смещение системы из положения равновесия под действием постоянной силы, модуль которой равен амплитуде вынуждающей силы (это справедливо лишь при небольшом затухании).

Реферат опубликован: 7/02/2009