Страница: 11/13
Криоэлектроника позволила создать большие и сверхбольшие интегральные схемы нового типа на основе сверхпроводящих пленочных структур для разработки нового класса электронных вычислительных машин со сверхбольшой памятью, меньших по габаритам и в 10— 100 раз более производительных, чем ранее существующие. В результате успешного решения технологических проблем в 1980—1985 гг. были изготовлены ЗУ с емкостью 256 Кбит на кристалле, временем записи и считывания 620 и 340 нс соответственно и потребляемой мощностью 7 мкВт.
Согласно прогнозам давних лет сверхпроводниковая ЭВМ могла бы быть изготовлена к 1990 г., причем память большой емкости - к 1983—1985 гг., а Центральный криоэлектронный процессор - к 1985—1987 гг. Однако из-за необходимости охлаждения сверхпроводниковые вычислительные устройства имеют ограниченные специальными целями применения. Значительный прогресс в разработке и выпуске, холодильных устройств (криостатов и рефрижераторов с замкнутым циклом на температуру 4,2 К) существенно удешевляет затраты, связанные с охлаждением. Действительно, ЗУ емкостью 108 бит состоит из 5*103 пластин размером 1 см2 содержащих каждая 2*104 бит. Мощность, потребляемая одной платой 10-4 Вт, полным ЗУ—0,5 Вт.
В эти же годы, по прогнозу, должны были быть созданы комбинированные (с газовым каскадом) и электронные твердотельные микроохладители на различные уровни криогенных температур, вакуумные и твердотельные приборы со сверхпроводящими соленоидами для освоения новых СВЧ диапазонов (миллиметровых и субмиллиметровых волн), измерительные приборы с разрешающей способностью и чувствительностью в 100—1000 раз лучше существующих.
Характерной чертой электроники являлось разнообразие материалов, применяемых в электронной технике. Наряду с диэлектриками и широкозонными полупроводниками все большую роль в электронике играли узкозонные полупроводники, материалы с температурой Кюри, лежащей в области криогенных температур, и сверхпроводящие материалы. Если ранее широкому внедрению сверхпроводников в электронику препятствовало то, что сверхпроводимость в них наступала при очень глубоком охлаждении, близком к абсолютному нулю, то теперь положение коренным образом изменилось. Синтезированы новые материалы, которые уже при Т~20 К становятся сверхпроводниками, созданы узкозонные полупроводниковые твердые растворы, полуметаллы, тонкие пленки, гетеро- и варизонные структуры на их основе, параэлектрические пленки на SrTiO3 с высокой нелинейностью, примесные пленки. Для выполнения столь обширной программы в области криоэлектроники необходима консолидация научных сил, занимающихся низкотемпературным материаловедением, низкотемпературной электроникой твердого тела и криогенным приборостроением, а также проведение фундаментальных работ по основным направлениям криоэлектроники, без которых нельзя ликвидировать создавшийся разрыв между большими открытиями в физике низких температур, прежде всего по сверхпроводимости и свойствам узкозонных полупроводников, полуметаллов и параэлектриков при криогенных температурах, и возможностью их широкого практического использования. Вместе с тем очевидно, что развитие криоэлектроники обогащало научно-техническую оснащенность страны, способствовало более быстрому развитию физики, химии, радиотехники, связи, автоматики, приборостроения. С каждым годом увеличивалось влияние криоэлектроники на другие области электронной техники. Это обусловлено тем, что непрерывное улучшение параметров электронных приборов постепенно приближает их к теоретически возможному пределу при обычных температурах. Глубокое охлаждение позволяет намного перешагнуть эти пределы и применять охлажденные приборы в едином модуле с криоэлектронными, что приводит к комплексной микроминиатюризации сложной радиоэлектронной аппаратуры.
Приборы криоэлектроники, как и приборы вакуумной, полупроводниковой, квантовой электроники и микроэлектроники, должны непрерывно дополнять и расширять возможности электроники. Это открыло огромные перспективы. На рубеже 1985—1995 гг. планировалось осуществить разработку и выпуск многоспектральных криоэлектронных приемных устройств, перекрывающих средний, дальний и сверхдальний ИК диапазоны для комплексов изучения природных ресурсов Земли и планет. А также следующее:
— промышленный выпуск приемных и приемопередающих ИК и СВЧ криоэлектронных модулей с твердотельными и электронными охладителями, которые находят широкое применение во многих наземных, космических и орбитальных системах связи, в радиолокации, телеметрии, управлении, автоматике, приборостроении, ракетной технике;
— широкое внедрение криоэлектронных приборов, обеспечивающих непосредственный прием через космос многих программ телевидения в любой точке Земли домашними телевизорами, а также прием сверхдальнего телевидения в салонах самолетов дальних рейсов, поездах и пароходах дальнего следования, в автомобилях. Возможен прием в любой точке Земли цветного телевидения, передаваемого как земными телецентрами, так и телецентрами других объектов;
Реферат опубликован: 19/11/2007