Страница: 9/13
Отсюда был сделан естественный вывод: использование сверхчистых металлов в конструкциях ЭВМ резко повысило бы эффективность вычислительных и управляющих систем. По мнению директора Института проблем технологии микроэлектроники и особо чистых материалов, члена-корреспондента АН СССР Ч. В. Копецкого, развитие науки и техники в этом направлении может привести к появлению новой отрасли — металлической электроники, или металлотроники. Основным элементом электронных систем, по его мнению, могут стать «триады» из двух сверхчистых металлических монокристаллов, соединенных (или разделенных) микромостиком («длиной» до 100 мкм), изготовленным также из металлического монокристалла особой чистоты. Через такой микромостик при близких к абсолютному нулю температурах можно пропускать электроток огромной плотности — 109— 1010 А/см2 . И мостик при этом даже не нагревается. Это поистине парадоксальное свойство сверхчистых металлов, ведь самый тугоплавкий металл обычной технической чистоты испаряется при плотности тока 105 на квадратный сантиметр.
Одним словом, металлотроника в содружестве с криогенной техникой являются продвижением научно-технического прогресса.
Перспективы применения структур на основе контактов сверхпроводников с полупроводниками в криогенной микроэлектронике
Проблема создания структур на основе контактов С—П, приборов и многофункциональных устройств на этих структурах является комплексной. Нужно пройти большой путь от разработки воспроизводимой технологии получения простейших контактов и приборов, например полупроводникового (как это ни странно звучит) криотрона с джозефсоновским вентилем, сверхчувствительных детекторов дальнего ИК диапазона до криоэлектронных приемных устройств и вычислительных систем, в которых необходимо будет найти разумное сочетание различных рассматриваемых структур. Но в целом этот путь полезный и даёт много нового микроэлектронике. Это можно показать в виде условной схемы на рисунке № 1, в которой представлены не только структуры и приборы, о которых выше упоминалось, но и возможные перспективные приборы.[9] Применение рассмотренных структур на основе контактов сверхпроводников с полупроводниками в криоэлектронике открывает новые возможности для создания различных (функциональных приборов: усилителей, детекторов, преобразователей, ПЗС с внутренним усилением, приемников ИК диапазона, линий задержки, регистров сдвига. Сочетание на одном полупроводниковом кристалле нескольких структур, выполненных в одном технологическом цикле, например структур, имеющих параметрические и детекторные элементы, в принципе позволяет поднять чувствительность криоэлектронных приемников прямого усиления до уровня супергетеродинных. Сочетание сверхпроводящих структур с полупроводниковым барьером, в которых при проявлении эффекта Джозефсона частоты принимаемого сигнала могут охватить практически весь ИК диапазон, с регистром сдвига на структурах с зарядовой связью и малошумящими усилительными элементами позволяет создать многоэлементные приемники с самосканированием, работающие в дальнем и сверхдальнем ИК диапазонах. Возможно создание на этой основе и многодиапазонных ПЗС ИК диапазона. При построении сложных интегральных схем на СВЧ микрополосковые линии и резонаторы усилителей могут быть выполнены непосредственно на той части поверхности полупроводникового кристалла, в которой при температурах Т<Тс наступает «вымораживание» носителей заряда и потери становятся примерно такими же, как и в хороших диэлектриках. На эту часть кристалла может быть нанесено и несколько дополнительных связанных пленочных сверхпроводящих резонаторов, образующих сверхпроводниковые СВЧ фильтры, либо преселекторы — усилители со сверхпроводниковыми резонаторами, предложенные и рассмотренные для мазера с пассивными сверхпроводниковыми резонаторами, либо Сп болометры. Способность работать при любых условиях охлаждения, вплоть до температур, близких к абсолютному нулю, где отсутствуют тепловые колебания, а шумы кристаллической решетки становятся исключительно малыми, причем ассортимент сверхпроводниковых и полупроводниковых материалов существенно расширен, является одним из ценных свойств рассматриваемых структур, которые базируются на передовой технологии БИС. Тенденция к освоению в микроэлектронике свойств твердого тела при криогенных температурах, проявившаяся благодаря успехам в создании различных криоэлектронных приемных систем на базе сверхпроводников, узкозонных полупроводников и других материалов, неуклонно пробивает себе дорогу. Одновременно, как видно из данной работы, появилась и другая тенденция, созревшая но мере развития электронного материаловедения и функциональной микроэлектроники. Это - переход к созданию в едином технологическом цикле уже не только материалов, например полупроводниковых кристаллов, и не только эпитаксиальных пленок из одного материала, но сначала «простых» полупроводниковых гетероструктур, МДП-структур, вплоть до рассматриваемых сложных структур С—П, С—П—С и др. Эти структуры можно назвать функциональными.
Реферат опубликован: 19/11/2007